

Biology of Floral Scent

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Biology of Floral Scent

Edited by
Natalia Dudareva
Eran Pichersky

Taylor & Francis
Taylor & Francis Group

Boca Raton London New York

A CRC title, part of the Taylor & Francis imprint, a member of the
Taylor & Francis Group, the academic division of T&F Informa plc.

Cover image by Liza Pichersky

Published in 2006 by
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-2283-9 (Hardcover)
International Standard Book Number-13: 978-0-8493-2283-9 (Hardcover)
Library of Congress Card Number 2005058202

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (<http://www.copyright.com/>) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Dudareva, N.A. (Natal'ia Arnol'dovna)
Biology of floral scent / Natalia Dudareva and Eran Pichersky.
p. cm.
Includes bibliographical references (p.).
ISBN 0-8493-2283-9
1. Flowers--Morphogenesis--Molecular aspects. 2. Flowers--Odor. 3. Plant osmophors. 4.
Pollination by insects. I Pichersky, Eran. II. Title.
QK653.D83 2006
575.6--dc22

2005058202

informa
Taylor & Francis Group
is the Academic Division of Informa plc.

Visit the Taylor & Francis Web site at
<http://www.taylorandfrancis.com>
and the CRC Press Web site at
<http://www.crcpress.com>

Contents

Section I Chemistry of Floral Scent

Chapter 1

Detection and Identification of Floral Scent Compounds	3
<i>Dorothea Tholl and Ursula S.R. Röse</i>	

Chapter 2

The Chemical Diversity of Floral Scent	27
<i>Jette T. Knudsen and Jonathan Gershenzon</i>	

Section II Biochemistry and Molecular Biology of Floral Scent

Chapter 3

Floral Scent Metabolic Pathways: Their Regulation and Evolution	55
<i>Natalia Dudareva and Eran Pichersky</i>	

Chapter 4

Biosynthesis of Volatile Terpenes in the Flowers of the Model Plant <i>Arabidopsis thaliana</i>	79
<i>Dorothea Tholl and Eran Pichersky</i>	

Chapter 5

An Integrated Genomics Approach to Identifying Floral Scent Genes in Rose	91
<i>Alexander Vainstein, Efraim Lewinsohn, and David Weiss</i>	

Section III Cell Biology and Physiology of Floral Scent

Chapter 6

Localization of the Synthesis and Emission of Scent Compounds within the Flower 105
Uta Effmert, Diana Buss, Diana Rohrbeck, and Birgit Piechulla

Chapter 7

Examination of the Processes Involved in the Emission of Scent Volatiles from Flowers 125
Reinhard Jetter

Section IV Plant-Insect Interactions and Pollination Ecology

Chapter 8

Relationship between Floral Fragrance Composition and Type of Pollinator 147
Heidi E.M. Dobson

Chapter 9

Floral Scent and Butterfly Pollinators 199
Susanna Andersson

Chapter 10

Floral Scent and Pollinator Attraction in Sexually Deceptive Orchids 219
Manfred Ayasse

Chapter 11

Detection and Coding of Flower Volatiles in Nectar-Foraging Insects 243
Mikael A. Carlsson and Bill S. Hansson

Chapter 12

Learning-Based Recognition and Discrimination of Floral Odors 263
Brian H. Smith, Geraldine A. Wright, and Kevin C. Daly

Chapter 13

Behavioral Responses to Floral Scent: Experimental Manipulations and the Interplay of Sensory Modalities	297
<i>Robert A. Raguso</i>	

Section V Commercial Aspects of Floral Scent**Chapter 14**

Molecular Engineering of Floral Scent	321
<i>Joost Lücker, Harrie A. Verhoeven, Linus H.W. van der Plas, and Harro J. Bouwmeester</i>	
Index	339

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Preface

The sense of smell is the most basic and universal sense. Even bacteria have mechanisms to detect the presence of chemicals in their environment. The scents that emanate from flowers have been noticed by humans since antiquity; a fact that has been documented in ancient texts. In 3000 B.C., when the Egyptians were learning to write and make bricks, they were already making primitive perfumes and using them for religious rituals. Humans' admiration for the fragrances of flowers has made these volatile substances into many commercial products. Volatiles are heavily used in the perfume, cosmetics, and fragrance industries, which are continually researching new and unusual volatile compounds and scents. Consumers are also constantly searching for new scented ornamental crops. However, the biosynthesis of floral volatiles and the roles of floral scents in plants are topics that have only recently begun to receive serious scientific attention. While we can certainly detect scent molecules in the air, the sheer number of such scents, and their complexity, confound us. Our olfactory sense is simply not good enough to separate the components and identify each one with any certainty. The consequences of our inability to clearly and objectively measure smells with our nose mean that, in the absence of appropriate instrumentation, scientific research in this area is greatly impeded.

Recent advances in practical methodologies and affordable instrumentation to collect, separate, and identify volatile compounds have allowed floral scent research to become a standard scientific research topic accessible to many investigators, which in turn has resulted in many exciting new discoveries. Thus the fourteen chapters of this book summarize and represent the progress in our current understanding of the major areas of investigation into floral scent: the techniques used to study it, how the various scent compounds are made, where they are made and how they are emitted from the flower, the effect of floral scent on the various ecological interactions between insects and flowers, and finally, how researchers are using the newly identified scent genes to genetically engineer flowers that will produce new scents. We realize that there is much more to be learned in this area and we hope that this book will stimulate new research to advance our understanding of floral scent biology.

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Editors

Eran Pichersky is the Michael M. Martin collegiate professor in the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor. Professor Pichersky received his bachelor of science degree from the School of Natural Resources at the University of California, Berkeley, and his Ph.D. from the University of California at Davis. He was a postdoctoral researcher at Rockefeller University from 1984 to 1987, when he moved to the University of Michigan. In 2000 he was a senior Fulbright fellow as well as a senior Alexander von Humboldt fellow while visiting the Max Planck Institute for Chemical Ecology in Jena, Germany.

Professor Pichersky has trained more than 20 graduate students and postdoctoral fellows, and has authored more than 150 scientific papers. His research over the years has involved the biosynthesis of scent volatiles in the flowers of the California annual plant *Clarkia breweri* and in the model plant *Arabidopsis thaliana*. His group has also been studying the volatile compounds that are stored in special glands on the leaves of tomato and basil and are released when the plant is injured by insect herbivores. Such volatiles act as deterrents against the herbivores and also help to attract predators of the herbivores.

Natalia Dudareva is a professor at Purdue University in West Lafayette, Indiana. She received her B.Sc. and M.Sc. in biology and biochemistry at the Novosibirsk State University, Russia, and Ph.D. in molecular biology at the Institute of Biochemistry, Kiev, Ukraine, in 1982. From 1982 to 1991 she worked as a senior scientist in the Institute of Cytology and Genetics of the USSR Academy of Sciences in Novosibirsk and her research focused on the structural organization and transcription of the plant mitochondrial genome. Dudareva then completed her postdoctoral training at the Institut de Biologie Moléculaire des Plantes, Strasbourg, France (1991–1993), and in the Department of Biological Science, Windsor University, Windsor, Ontario, Canada (1993–1995), with emphasis on isolation and characterization of pollen-specific genes in sunflower.

As a postdoctoral research fellow in the laboratory of Professor Eran Pichersky at the University of Michigan, Ann Arbor, she became interested in plant secondary metabolism and biosynthesis of plant volatile compounds. Using *Antirrhinum majus* and *Petunia hybrida* as model systems, she continued the investigation of the regulation of floral volatiles' production at Purdue University, where she became an assistant professor in 1997 and an associate professor in 2001. Dudareva's laboratory is now combining the power of biochemical and genetic engineering approaches with metabolic modeling to gain new insights into the metabolic network leading to volatile secondary metabolites and to obtain a comprehensive understanding of the regulation of their production and emission in *planta*. In 2005 she received Purdue's 2005 Agriculture Research Award for her contributions to the understanding of the biochemistry of floral scent compounds.

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Contributors

Susanna Andersson

Max Planck Institute of Chemical Ecology
Beutenberg Campus
Jena, Germany

Manfred Ayasse

Department of Experimental Ecology
University of Ulm
Ulm, Germany

Harro J. Bouwmeester

Business Unit Bioscience
Plant Research International
Wageningen, The Netherlands

Diana Buss

Department of Biological Sciences
University of Rostock
Rostock, Germany

Mikael A. Carlsson

Division of Chemical Ecology
Department of Crop Science
Swedish University of Agricultural Sciences
Alnarp, Sweden

Kevin C. Daly

Department of Biology
West Virginia University
Morgantown, West Virginia

Heidi E.M. Dobson

Department of Biology
Whitman College
Walla Walla, Washington

Natalia Dudareva

Department of Horticulture and
Landscape Architecture
Purdue University
West Lafayette, Indiana

Uta Effmert

Department of Biological Sciences
University of Rostock
Rostock, Germany

Jonathan Gershenzon

Max Planck Institute for Chemical Ecology
Jena, Germany

Bill S. Hansson

Division of Chemical Ecology
Department of Crop Science
Swedish University of Agricultural Sciences
Alnarp, Sweden

Reinhard Jetter

Department of Botany and Department of Chemistry
University of British Columbia
Vancouver, British Columbia, Canada

Jette T. Knudsen

Ecological Institute
Lund University
Lund, Sweden

Efraim Lewinsohn

Department of Vegetable Crops
Newe Ya'ar Research Center
Agricultural Research Organization
Ramat Yishay, Israel

Joost Lücker

Biotechnology Laboratory
University of British Columbia
Vancouver, British Columbia, Canada

Eran Pichersky

Department of Molecular, Cellular, and
Developmental Biology
University of Michigan
Ann Arbor, Michigan

Birgit Piechulla

Department of Biological Sciences
University of Rostock
Rostock, Germany

Robert A. Raguso

Department of Biological Sciences
University of South Carolina
Columbia, South Carolina

Diana Rohrbeck

Department of Biological Sciences
University of Rostock
Rostock, Germany

Ursula S.R. Röse

Institut Phytosphäre
Forschungszentrum Jülich
Jülich, Germany

Brian H. Smith

Department of Entomology
Ohio State University
Columbus, Ohio

Dorothea Tholl

Department of Biological Sciences
Virginia Tech University
Blacksburg, Virginia

Alexander Vainstein

Faculty of Agricultural, Food, and
Environmental Quality Sciences
Hebrew University of Jerusalem
Rehovot, Israel

Linus H.W. van der Plas

Laboratory of Plant Physiology
Wageningen University
Wageningen, The Netherlands

Harrie A. Verhoeven

Business Unit Bioscience
Plant Research International
Wageningen, The Netherlands

David Weiss

Faculty of Agricultural, Food, and
Environmental Quality Sciences
Hebrew University of Jerusalem
Rehovot, Israel

Geraldine A. Wright

Mathematical Biosciences Institute
Columbus, Ohio

Section I

Chemistry of Floral Scent

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

1 Detection and Identification of Floral Scent Compounds

Dorothea Tholl and Ursula S.R. Röse

CONTENTS

1.1	Introduction.....	3
1.2	Floral Volatile Sampling Techniques	5
1.2.1	Static Headspace Sampling Techniques	5
1.2.1.1	Solid Phase Microextraction	5
1.2.2	Dynamic Headspace Sampling Techniques	7
1.2.2.1	Closed-Loop Stripping	8
1.2.2.2	Pull Systems.....	9
1.2.2.3	Push-Pull Systems.....	10
1.2.2.4	Online Volatile Collection Systems.....	11
1.2.3	Other Headspace Sampling Techniques.....	12
1.3	Adsorption and Desorption of Volatiles.....	12
1.4	Gas Chromatographic Separation of Volatiles	13
1.5	Volatile Detection and Identification.....	14
1.5.1	Enantioselective GC, Multidimensional GC	16
1.6	Structure Elucidation of Volatile Compounds	16
1.7	Volatile Analysis Techniques with High Time Resolution.....	17
1.7.1	Fast and Transportable GC (zNose).....	17
1.7.2	Proton Transfer Reaction Mass Spectrometry	18
1.8	Conclusion	20
	References.....	20

1.1 INTRODUCTION

Any treatment of the subject of floral scent must begin with a description of how its components are detected and identified. Such investigation is often referred to as “headspace” analysis, a term derived from the beer industry, where the analysis of the volatiles in the “head” of the beer was first developed. Floral headspace analyses were developed more than 30 years ago and have since greatly improved as analytical methods have become sensitive enough to collect and analyze volatiles

by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) directly. Several previous reviews have discussed and compared different headspace techniques.¹⁻⁷ In this chapter we discuss several practical approaches to floral scent analysis and their advantages and limitations.

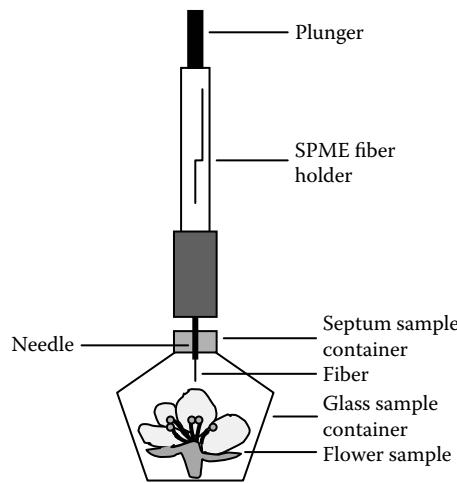
The first step in choosing a sample technique should always focus on the biology of the plant system and the purpose of the floral scent analysis. A first consideration is whether volatiles need to be collected in the field or whether the volatiles can be collected in the laboratory without affecting the composition of the blend. While some collection methods are transportable and can easily be taken to the field, other more sophisticated methods may require a complicated setup suitable only for the laboratory. A second consideration should focus on whether the floral scent of the investigated plant is already known and identified, and is only being confirmed (e.g., repetitive insect behavioral experiments), or whether the volatile blend is unknown and needs to be identified completely. Total characterization of a volatile blend often requires additional analytical steps and therefore necessitates more source material for compound identification. Also, if several flowering species are screened for the presence of only one or two compounds, the most appropriate technique may differ from the one necessary for complete identification of a complex volatile blend. Flowers may emit large amounts of volatiles that can easily be detected, even by the human nose, or they may appear rather odorless. Depending on the expected detectability of the floral scent, one may have to choose different types of collection methods that vary in their sensitivity. Flowers of *Arabidopsis thaliana*, for example, which release only very small amounts of volatiles (see Chapter 4),⁸ require different collection techniques than flowers that release large amounts of volatiles, such as *Mirabilis jalapa*.⁹

Another important consideration is the developmental stage of the flower and timing when volatiles are collected. Some flowers, such as the orchid *Ophrys sphegodes*, are known to change their odor emission after pollination has occurred.^{10,11} The volatile profile emitted by the flowers may also vary depending on the time of day,^{9,12-14} as some flowers are mainly pollinated by moths and emit volatiles at night to attract their pollinators, while others are pollinated by insects that are mainly active during the day.¹⁵ While some collection techniques allow for a very high time resolution of the volatile emissions, other techniques require several hours to collect sufficient material for further analysis. Depending on the time intervals during which volatiles should be sampled, some collection methods allow for an easy automated setup for 24 h collections, while others are most appropriate for taking a “snapshot” of the current volatile release.

In the following sections we present a selection of collection methods that range from low-tech, inexpensive, quick sampling methods to high-tech methods that require a complicated laboratory setup and can automatically collect samples in short time intervals over several days. We also present an overview of detection and identification methods for volatiles, including GC-MS, enantioselective GC, and multidimensional GC, and discuss the latest developments in ultrafast volatile analysis techniques, such as zNoseTM and proton-transfer reaction mass spectrometry (PTR-MS).

1.2 FLORAL VOLATILE SAMPLING TECHNIQUES

In all volatile collection methods, the used chamber for headspace collection should be free of material that retains volatiles or causes bleeding of compounds that may contaminate the system. Good choices for materials include glass, Teflon, and metal, which are easy to clean and do not show bleeding, whereas materials such as rubber, plastic, glues, adhesives, and wood should be avoided. Details on the materials for the construction of such chambers are discussed by Millar and Sims.⁶


1.2.1 STATIC HEADSPACE SAMPLING TECHNIQUES

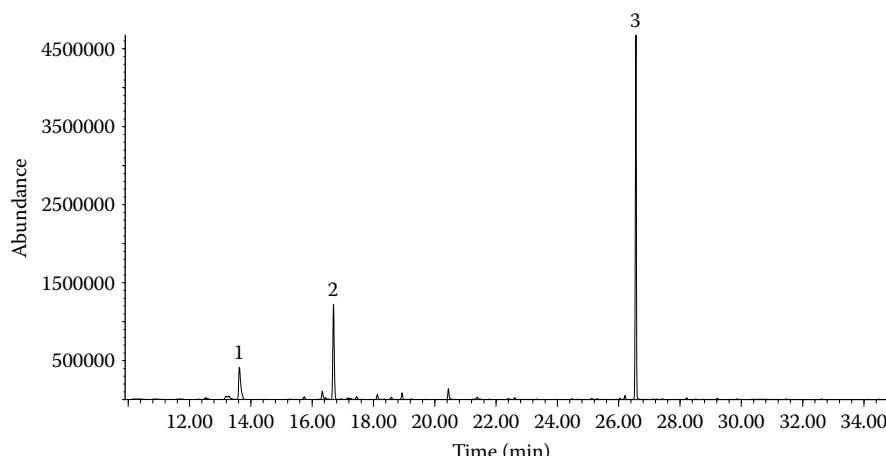
Sampling of volatiles from a static headspace has the advantage of an enrichment of volatiles in a closed tube or chamber. The background impurities that can result from a continuous airstream are reduced, which is an advantage when collecting from low-emitting flowers such as *A. thaliana*. However, for longer sampling times in a static airspace, humidity and a lack of gas exchange may interfere with normal physiological processes and affect the emission of volatiles. If volatiles are sampled in the presence of additional light, a temperature increase in the chamber may affect the emission of volatiles. For applications that require a time course with an expected change in volatile emissions, static headspace sampling does not work well because not all of the emitted volatiles are removed at one sampling time and changes in emission are difficult to determine.

1.2.1.1 Solid Phase Microextraction

Solid phase microextraction (SPME) is a very fast, effective, and simple method for collecting volatiles. The method is based on an adsorption-desorption technique using an inert fiber coated with different types of adsorbents that can vary in polarity and thickness and can be selected according to different types of applications. The adsorbent-coated fiber is mounted to a modified syringe and can be extended out of a needle by pushing the plunger and exposing the fiber to volatiles. The SPME device is available from Supelco (Bellefonte, PA). To collect from the static headspace of a flower sample that is enclosed in a glass container sealed with a septum, the needle of the SPME holder is inserted through the septum and the fiber is extended into the headspace (Figure 1.1). The flower volatiles are then adsorbed by the exposed fiber for several minutes to an hour, until equilibrium is reached. After volatile collection, the fiber is retracted into the needle, which is then transferred to a GC injector where the fiber is exposed to thermal desorption of the compounds. Direct desorption of volatiles from the fiber into a GC injector eliminates the need for solvent-mediated desorption, thereby reducing solvent contaminants in the analysis that may obscure some volatile compound peaks. Limitations of SPME sampling are that samples can be injected only once (no repeated injections), and the amount of material obtained from sampling by SPME is generally sufficient for GC analysis, but not for structure elucidation of unknown compounds.

The amounts adsorbed by the SPME fiber depend on the thickness of the fiber and the distribution constant of the analyte, which generally increases with molecular weight and boiling point. For most volatiles, a thick coating is recommended to

FIGURE 1.1 SPME device to extract volatiles from the headspace of a flower enclosed in a glass sample container. The adsorbent-coated fiber is mounted to an SPME fiber holder, similar to a modified syringe that is injected through the septum of the sample container. By pushing the plunger of the SPME fiber holder, the fiber can be extended out of the needle, exposing the fiber to volatiles. After collection, the fiber is retracted into the needle and the SPME is removed from the container for GC analysis of the absorbed volatiles.


better retain volatile compounds until thermal desorption, whereas semivolatile compounds may be better detected with a thin fiber coating. Thicker coatings desorb analytes more slowly, which increases the risk of carryovers. In general, fibers should be cleaned carefully by heating before reusing them. Thin coatings ensure fast diffusion and release of higher boiling point compounds. The adsorption of volatiles also depends on the polarity and porosity of the surface area. Nonpolar volatile compounds and nonpolar semivolatile compounds are effectively extracted with nonpolar fiber coatings such as polydimethylsiloxane (PDMS). Polar volatiles can be extracted with PDMS/divinylbenzene fibers, and trace level volatiles can be extracted with a PDMS/Carboxen™ fiber.

The effectiveness of SPME extraction is influenced by the volatile concentration relative to the sample volume. At low concentrations, changes in headspace sample volume do not affect responses, because equilibrium is concentration dependent. However, at higher concentrations, the sample volume has a strong effect. In a large sample volume of greater than 5 ml, containing a high concentration of volatile analyte, the amount of analyte removed from the sample is not sufficient to change the concentration. Hence, the response throughout a calibration curve is mostly exponential and is linear only for low concentrations (50 ppb). For the collection of volatiles from flowers, a small volume of 5 ml or less is often not practical. An external or internal calibration for some compounds may be possible, but is often difficult when dealing with a wide range of compounds of different concentrations in one sample. Detailed information on theory, optimization, and different types of fiber adsorbents is available from Supelco. The company also offers a portable field sampler with a Carboxen™/PDMS fiber that has a sealing mechanism to allow storing of samples for later analysis in the laboratory.

Recently the detection of volatiles by SPME has been applied to an increasing number of studies, including a variety of different flowers such as *Ceratonia siliqua*, *Osyris alba*, and different rhododendron species, with a broad range of compounds being extracted from the headspace.^{16–18} For a variety of volatile compounds including terpenes and others, we have good experience using a PDMS fiber with a 100 μm film thickness. Although we have observed high selectivity of the fiber for the monoterpene (E)- β -ocimene, we found the method very useful for rapid screening of headspace compounds like, for example, from flowers of the butterfly bush (*Buddleja davidii*) (Figure 1.2). However, consistent sampling time, temperature, and sample volume are crucial to obtain comparable results.

1.2.2 DYNAMIC HEADSPACE SAMPLING TECHNIQUES

Sampling of volatiles from a dynamic headspace eliminates some of the problems that are connected to sampling from static headspace. In general, larger amounts of volatiles can be collected over longer time periods by adsorption (see Section 1.3) in a continuous airstream, allowing not only subsequent detection, but also structure elucidation of compounds. In addition, systems with a continuous incoming airstream provide sufficient temperature and gas exchange and avoid accumulation of compounds in the headspace that may affect the volatile release (pull and push-pull systems). Relative humidity can be adjusted in a push-pull system to a desired percentage by adding a humidified airstream to the incoming air and mixing it with dry air. However, care needs to be taken to avoid background impurities by cleaning the incoming air carefully with filters containing, for example, activated charcoal. The problem of background contaminants resulting from continuous incoming air is reduced in closed-loop stripping systems, where a limited air volume is sampled repeatedly.

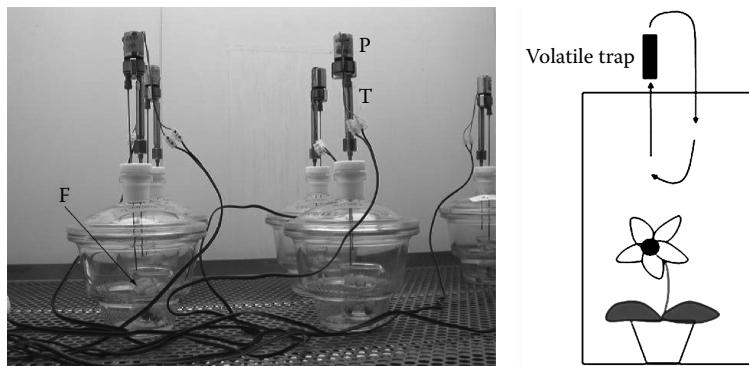


FIGURE 1.2 Volatiles collected by SPME from the headspace of detached flowers of the butterfly bush, *Buddleja davidii* (Scrophulariaceae), enclosed in a glass desiccator for 15 min. Tentative identification of main compounds by GC-MS on a DB-5MS column: (1) (E)- β -ocimene; (2) ketoisophorone; (3) (E,E)- α -farnesene.

1.2.2.1 Closed-Loop Stripping

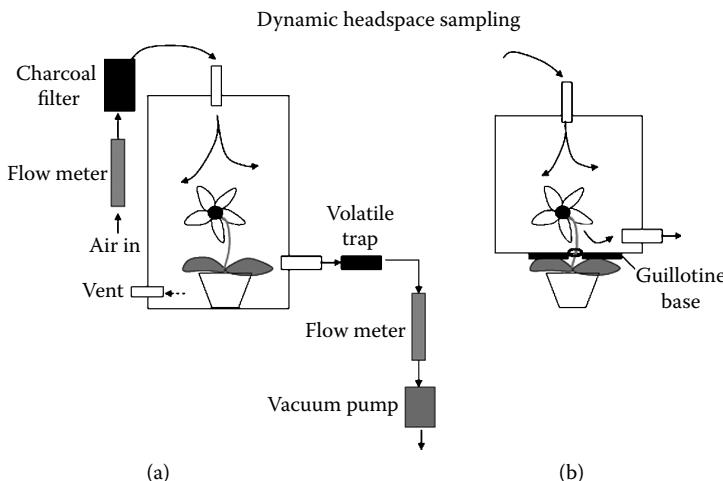
In closed-loop stripping systems, volatiles are collected inside closed devices by circulating headspace adsorption. A closed-loop stripping apparatus has been described by Omata et al.¹⁹ for floral scent analysis from oriental orchids. Boland et al.²⁰ developed a similar system, in which plants or detached plant parts are placed in small glass containers such as 1 l or 3 l desiccators. The top of the container is connected to the odor-collecting device consisting of a circulation pump, stainless steel tubes, and a stainless steel housing containing the volatile trap (Figure 1.3). Headspace air is circulated through the container and the connected trap at flow rates of approximately 3 l/min, allowing continuous quantitative collection of emitted volatiles. The system has been applied not only to the analysis of herbivore-induced volatiles,^{21,22} but also to trapping floral volatiles, including collections from flowers with very low emission rates.

Analysis of volatiles from extremely low-scented flowers can be complicated for different reasons. In open headspace systems (see Section 1.2.2.3), often only a proportion of the air passing through the chamber is pulled through the adsorbent filter, thereby reducing the total amount of trapped volatiles. Higher flow rates or extended collection times can compensate for the reduced capture of emitted volatiles; however, these can enhance the trapping of contaminants present in the air or the collection system. The increased noise level in the baseline signal of subsequent GC analyses will complicate the detection of less abundant sample volatiles.⁷ One example of a plant with low floral volatile emission rates is the model plant *A. thaliana*. *Arabidopsis* plants emit approximately 200-fold less floral volatiles per hour than strongly scented plants such as *Clarkia breweri*.⁸ Closed-loop stripping of monoterpene and sesquiterpene volatiles emitted from *Arabidopsis* flowers was performed by placing 70 to 150 excised inflorescences in small, water-containing, glass beakers inside a sealed 1 l desiccator. Volatiles were collected on traps containing 1.5 mg charcoal or 25 mg Super Q® (Alltech Associates, Deerfield, IL) (see Section 1.3)

FIGURE 1.3 Volatile collection by the closed-loop stripping procedure. The photograph shows the collection of volatiles emitted from detached snapdragon flowers during feeding with isotope-labeled precursors.²⁴ P, circulation pump; T, steel housing containing the volatile trap; F, snapdragon flowers.

for 6 to 12 h.^{8,23} Floral volatile profiles and compositions analyzed with this method were comparable to those obtained by semiopen headspace volatile trapping from similar numbers of undetached inflorescences, but showed a clearly improved signal:noise ratio, thus allowing a detailed analysis of minor components of the complex terpene volatile mixture.

In addition to qualitative and quantitative analyses of natural floral volatiles, closed-loop stripping procedures have also been used to elucidate the biosynthesis of floral scent components by trapping volatiles from detached flowers treated with biosynthetic inhibitors or supplied with isotope-labeled precursors. For example, cut snapdragon flowers were fed with deuterium-labeled terpene biosynthesis precursors of the mevalonate and methylerythritol phosphate (MEP) pathways, respectively, or inhibitors of these pathways, revealing that mono- and sesquiterpenes emitted from snapdragon flowers are exclusively synthesized via the MEP pathway.²⁴


Closed-loop stripping systems can easily be set up in controlled climate chambers. They allow volatile collections from several plants at the same time, which makes them suitable for the analysis of several replicates and screening purposes. A disadvantage of the closed-loop stripping procedure is the strongly reduced air exchange between the inside and outside of the chamber that affects the gas exchange of the plant during longer sampling times. Volatiles that are not adsorbed on the trapping material (e.g., ethylene) or pass through the trap because of a saturated adsorbent surface will accumulate in the chamber and might influence the metabolism of the plant. In addition, transpiration can enhance the relative humidity during collection, requiring intermediate venting of the system between trapping cycles. It is therefore recommended to combine closed-loop stripping analyses with other open headspace sampling techniques for additional result verification and exclusion of potential artifacts.

1.2.2.2 Pull Systems

A simple form of a pull system is an adsorbent trap connected to a vacuum pump that is directly positioned next to a flower.^{25,26} This may work well for some flowers that emit large amounts of volatiles; however, the risk is high of trapping ambient air that contains impurities unrelated to the flower and which will obscure minor sample compounds during GC analysis. Enclosure of a flower or flowering branch in a small glass container or a polyacetate cooking bag that releases very little volatiles³ may reduce the amount of impurities from ambient air. Air enters the container through a purifying filter and is drawn from the chamber by pulling a defined volume of air through an adsorbent trap that can be extracted for further analysis.⁷ Although this method is very easy to set up and is portable to the field, it has some drawbacks. Temperature can increase when the chamber is exposed to direct sunlight and the relative humidity inside can increase to nearly 100% within a short time and may lead to condensation on the chamber walls. If a bag is used, it may collapse and damage flower tissue, which may alter volatile emissions. Furthermore, openings in the chamber may provide additional sources of unpurified air entering the system.

1.2.2.3 Push-Pull Systems

In push-pull systems, purified air, which can be humidified to a desired percentage, is pushed into a chamber containing the flowering plant at a controlled flow rate regulated by a flow meter. A defined portion of this air is pulled through a collector trap by a vacuum pump regulated by a second flow meter (Figure 1.4a). Thus a known percentage of the volatiles emitted are collected. To avoid a vacuum or overpressuring of the system, a vent is included in the chamber. Positive-pressure venting prevents ambient air from contaminating the volatiles collected.²⁷ This positive-pressure venting is also employed in large glass collection chambers on top of a multiport guillotine base. The guillotine base contains concentric gas-sampling ports and two Teflon®-coated removable blades that close the bottom of the chamber around the stem of the plant, leaving an opening for the stem where the blades fit together (Figure 1.4b). This collection system allows for sampling of volatiles from flower parts of intact growing plants, while completely isolating the lower section of the plant including the soil and pot.^{9,28,29} Volatiles are subsequently eluted from the trap with solvents such as methylene chloride and analyzed by GC. The technique has been described in detail³⁰ and was further improved and computer automated to switch traps for drawing samples at predefined time intervals over several days to follow changes in emission of volatiles.^{28,31} Such sophisticated automated volatile collection systems can be custom designed by Analytical Research Systems (Gainesville, FL).

FIGURE 1.4 Example of a push-pull headspace collection system: (a) Air is pushed through a flow meter at a specified rate and cleaned by passing through a charcoal filter before entering the top of the glass chamber containing the flower. After passing over the flower sample, volatiles are pulled through a volatile adsorbent trap on the lower side of the chamber by a vacuum pump at a defined rate, regulated by a second flow meter. Access air for positive pressure venting can escape through the vent on the lower side of the chamber. (b) Example of a push-pull headspace collection chamber following the same principle as (a) for sampling volatiles from parts of a plant. As a modification, Teflon-coated guillotine-like blades close the base of the chamber around the stem of the flower, leaving a small opening for the stem.

Volatiles from flowering *M. jalapa* were identified²⁸ and their emission over a time course of 48 h was determined with this system.⁹ The entire collection chamber can be installed in a greenhouse or in a climate chamber that allows for control of environmental parameters.

1.2.2.4 Online Volatile Collection Systems

Trapping of volatiles on adsorbents and their subsequent elution with organic solvents have been successfully used in many applications (see [Section 1.3](#)). However, the sensitivity of the method suffers from the dilution of volatiles by the solvent in the desorption process from the volatile trap. Because only small amounts of the eluted compounds can be analyzed by GC, the sampling times have to be sufficiently long to provide an eluate with enough material for analysis. Therefore precise information on the course of volatile release over short time periods is difficult to obtain. An alternative method is thermal desorption, where volatiles are collected on a trap that is directly inserted into a small oven placed on top of a gas chromatograph. By heating the trap, volatiles are transferred to the analytical column. However, because of interactions between the analytes and the adsorbent surface, higher temperatures may be required for desorption, depending on the compounds. An insufficiently low desorption temperature will result in incomplete release of compounds from the trap, whereas an excessively high desorption temperature can generate artifacts through the formation of degradation products. Tenax® has been successfully used as an adsorbent material in thermal desorption to isolate volatile chemicals³² (see also [Section 1.3](#)), but may lead to interference of degradation products from decomposition of the polymeric skeleton and incomplete desorption of high molecular weight compounds.³³ In comparison to Tenax, the PDMS trapping material, discussed earlier for SPME analysis ([Section 1.2.1.1](#)) has been reported to have better properties in preconcentrating the analytes by dissolving them on the bulk of the liquid phase instead of adsorbing them to a porous surface.^{34,35} Therefore less energy is necessary to release volatiles from PDMS traps compared to adsorption to Tenax and lower temperatures are sufficient to transfer the sample to a gas chromatography column.

For automated sampling systems, an online thermal desorption method has been described^{36,37} that is now commercially available (Gerstel Online-TDS G, Gerstel, Germany). The Gerstel Online-TDS consists of two temperature vaporization chambers placed in series, which are a thermodesorption unit or connected to a temperature-programmable split-splitless injector via a 6-2-way valve mounted on a heated valve chamber. By regulating the mass flow, the system can automatically draw volatile samples with the Online-TDS G. After a cryofocusing step, compounds are flash heated and directly injected on the column. The time resolution of 5 to 60 min depends on the time necessary to collect sufficient amounts of volatiles from the emitting flower for analysis, the compounds themselves, and the time for chromatographic separation on the GC-MS. The TDS G system can be connected to two collecting containers containing the flower samples, as described in detail by Ver-
cammen et al.³⁵ This method allows for a high time resolution, depending on the compounds, and high sensitivity, but currently requires an extensive laboratory setup.

1.2.3 OTHER HEADSPACE SAMPLING TECHNIQUES

Besides dynamic headspace sampling, vacuum headspace trapping techniques have been frequently applied in the past for floral fragrance analysis.³⁸ This method is a form of vacuum steam distillation. Flowers are subjected to a vacuum and volatile compounds are distilled off with the water contained in the plant. Subsequent condensation of the compounds at low temperatures results in a fragrance concentrate which, compared to dynamic headspace sampling, often contains higher proportions of higher boiling point compounds. Because of the improved organoleptic quality of this type of odor concentrate compared to concentrates produced by a dynamic method, the vacuum headspace technique is primarily used in perfume applications. However, it is less applicable for studying the role of floral scent in plant pollinator interactions, since the sampling technique destroys the cellular compartmentation of the plant material and can lead to an additional emission of wound-induced volatile compounds.

1.3 ADSORPTION AND DESORPTION OF VOLATILES

Excellent evaluations regarding the choice and application of volatile adsorbents have been published by several authors in recent years^{6,7,39}; therefore, this chapter will primarily summarize the most important practical aspects in the use of different adsorbent materials for volatiles collection.

Matrices used for SPME in static headspace collections have already been described in detail in [Section 1.2.1.1](#). For dynamic headspace volatile collections, adsorbents are usually packed in beds of approximately 2 to 50 mm inside glass or metal tubes between glass wool plugs or metal grids. The amount of adsorbent material used depends on the chemical properties of the compounds to be trapped, the adsorbing capacity of the matrix, the sampling volume, and the flow rate of the collection system. In the case of volatile collections from low-scented flowers, the amount of trapping matrix should be kept low to reduce the volume of solvent required for subsequent compound elution. Smaller amounts of adsorbent also minimize potential artifacts and resistance to air flow. However, if insufficient amounts of trapping media are used, volatile compounds might break through the trap because of adsorbent surface saturation. Breakthrough sampling volumes (per gram of adsorbent) are specified by the supplier or need to be determined by using a series of two traps for collection.

A variety of different adsorbents have been applied for floral volatile trapping. The most common media are the polymer-based Porapak Q® (80 to 100 mesh size; Alltech Associates; Supelco, Taufkirchen, Germany) and its refined version Super Q®, Tenax GC® and its cleaner version Tenax TA® (60 to 80 mesh; Alltech Associates), and activated charcoal. Other carbon-based adsorbents are carbon molecular sieves (Carboxen™, Carbosieve™; Supelco) and graphitized carbon blacks (Carbotrap®; Supelco).³⁹

Both porous polymers, Tenax (2,6-diphenyl-*p*-phenylene oxide) and Porapak (ethylvinylbenzene-divinylbenzene), share similar properties. These include a high affinity for lipophilic to medium polarity organic compounds of intermediate molecular

weight and low affinity for polar and low molecular weight compounds such as ethanol and water.

Trapped volatiles are usually eluted from the adsorbents into glass vials with pure solvents or mixtures of low boiling point organic solvents such as pentane, hexane, ether, acetone, or dichloromethane, the latter being preferable with Porapak. A defined amount of one or two standard compounds (e.g., 1-bromodecane, n-octane, nonyl acetate) is generally added to the sample for semi-quantitative analysis. Volatile extracts can be further concentrated by solvent evaporation at ambient temperature or under a nitrogen stream before they are stored at freezing temperatures. Under field conditions, extracts are ideally stored in flame-sealed glass ampoules to exclude sample evaporation.² After compound elution, adsorbents are reconditioned by rinsing with clean solvent and dried at room temperature or by flushing with clean nitrogen.

While Tenax appears to have a lower capacity for small molecules compared to Porapak,⁴⁰ its thermal stability (350°C) is higher than that of the Porapak polymer (250°C). Therefore Tenax is particularly suited for thermal desorption of volatile compounds in GC analysis. Thermal desorption in combination with cryofocusing (see also [Sections 1.2.2.4](#) and [1.4](#)) allows analysis of the total sample and therefore can enhance the detection limit compared to the analysis of aliquots from solvent-eluted samples. Limitations of thermal desorption include the impossibility of repeated sample injections, the degradation of thermally unstable compounds, and artifacts produced from the trapping media.^{33,41} Artifacts not only occur with thermal desorption, but can be the result of reactions of the adsorbent material itself or reactions of the adsorbed compounds on the polymer surface. For example, ozone reacts with terpenes on Tenax if ambient air is used in the collection chamber.^{42,43} Aromatic ketones and alcohols were identified as artifacts from Porapak,^{44,45} and benzaldehyde and acetophenone were found from Tenax, particularly under irradiation with sunlight.⁴⁴

In comparison to Tenax and Porapak, activated charcoal is a cheap adsorbent with high adsorbing capacity. It is used in very small traps (1.5 mg) that are commercially available from different companies (e.g., CSLA-Filter, Le Ruisseau de Monbrun, Daumazan sur Arize, France). Traps can be eluted with small volumes (30 to 40 µl) of an organic solvent such as dichloromethane and reconditioned by extensive rinsing with solvents of different polarity. Artifacts observed with charcoal have been described for the adsorption of terpenes such as ocimene that can be oxidized on the active surface of the adsorbent.³⁸ Charcoal has been reported to be less efficient than Tenax in trapping aromatic aldehydes.⁷ Thus combinations of Tenax and activated charcoal have been applied for trapping the full range of floral volatiles emitted from different orchid species.⁴⁶

1.4 GAS CHROMATOGRAPHIC SEPARATION OF VOLATILES

Gas chromatography is the most efficient chromatographic technique for the separation, identification, and quantification of volatile organic compounds, including plant

volatiles. Numerous research and review articles have been published describing continuous developments and advances in GC analysis technology.^{47–53}

Floral volatiles are usually trapped and preconcentrated on adsorbent matrices prior to GC analysis (see [Section 1.3](#)). Samples eluted from adsorbents with organic solvents are injected into the column in a split or splitless mode. Split injection provides the advantage of rapidly transferring a small portion of the analytes to the column, resulting in narrow inlet sample bands and chromatographic peaks. In comparison, in the splitless mode, the entire sample is introduced into the column at lower flow rates. This mode is preferred for high-sensitivity analysis of samples with low concentrations.⁵⁴ The temperature of the injection liner is typically adjusted to 230 to 250°C to ensure complete vaporization of all sample components. However, adjustments to lower temperatures have to be considered in case of compound decomposition. For example, a conversion of the sesquiterpene germacrene A to β -elemene can be eliminated at an injection temperature of about 150°C.⁵⁵

When samples are thermally desorbed from adsorbents such as Tenax, the solid material is placed directly in a thermal desorption tube that is heated to 250°C to 300°C. In a two-stage thermal desorber, the thermally released volatiles are then transported with the carrier gas to a cold or cryotrap for preconcentration prior to their injection into the GC column. Thermal desorption units are available from different suppliers (Markes, Perkin-Elmer, Gerstel). Despite their still relatively high price, they can save time and money since no manual sample preparation is needed. This advantage has led to the development of online systems combining volatile trapping with automated thermal desorption (see [Section 1.2.2.4](#)).

The separation of volatiles in GC analysis is most frequently achieved by the use of fused-silica capillary columns. The most common stationary phases, bound to the inner surface of the column, are the nonpolar dimethyl polysiloxanes, including DB-1, DB-5, CPSil 5, SE-30, and OV-1, and the more polar polyethylene glycol polymers, including Carbowax™ 20M, DB-Wax, and HP-20M. Columns are usually 30 m long and have a stationary phase film thickness of 0.2 to 0.3 μ m and an internal diameter of 0.25 mm correlated with a column efficiency of approximately 5000 plates/m.⁵⁶ For different stationary phases, retention index data such as the Kovats index system have been developed to facilitate compound characterization and identification. Such retention indices have been determined and summarized for several hundred volatile compounds.^{57,59}

1.5 VOLATILE DETECTION AND IDENTIFICATION

For the detection of volatile compounds separated by GC, two different types of detectors can be used. The first type, for example, a flame ionization detector (FID), provides only information on retention times, while detectors of the second type, such as MS and Fourier transform infrared (FT-IR) spectroscopy, allow additional structure evaluation. The FID is the most widely used detector in GC analysis. Organic compounds are ionized in a hydrogen/air flame, producing a signal proportional to the mass flow of carbon. FIDs are primarily employed in quantitative analysis because of their wide linear dynamic range (10⁶ to 10⁸), a very stable response, and high sensitivity, with detection limits on the order of 0.05 to 0.5 ng per compound.

Since isomers with the same molecular formula and carbon content (e.g., sesquiterpene hydrocarbons) principally generate the same FID signal response, relative response factors can be calculated for compounds that are not available in pure form for calibration.

Another detector used in quantitative analysis is the thermal conductivity detector (TCD), which operates by differential thermal conductivity of gaseous mixtures. Compared to FIDs, TCDs do not cause sample destruction, but have only moderate sensitivity (5 to 50 ng per compound). Other detectors applied to the analysis of volatiles are the nitrogen phosphorus detectors (NPDs), which show very high sensitivity for nitrogen- and phosphorus-containing compounds,⁶⁰ and photoionization detectors, which have been employed in monitoring plant isoprene and monoterpenes.^{61,62}

Besides flame ionization detection, MS is one of the most widely used detection techniques in GC analysis. The most common configuration of bench-top GC-MS systems is a gas chromatograph with a single capillary column directly coupled to a quadrupole mass spectrometer with electron ionization (EI). The operating principle of MS relies on the generation of positively charged molecules and molecule fragments from compounds exiting the GC column. The produced ion fragments enter the quadrupole mass spectrometer filter where they are selected according to their mass:charge (m/z) ratio by rapid changes in an electromagnetic field. Following detection of the ions with an electron multiplier, a total ion chromatogram is obtained providing information on the retention time of each compound and its mass spectrum that consists of a characteristic ion fragmentation pattern. Ionization is achieved by either electron impact or chemical ionization that causes less massive fragmentation. MS is a highly sensitive detection method with a minimum detectable quantity in the range of 0.1 to 1 ng per compound. The sensitivity can be further increased in the selected ion monitoring (SIM) mode, in which only selected ions representing particular compounds are scanned. The SIM mode can also be applied for quantification by measuring the most abundant base ion unique to each compound.

Because of the popularity of EI-MS for routine analysis of volatile compounds, several comprehensive mass spectral libraries (Wiley, NIST MS Database, 1998) have been established that are used in EI-MS searches to support compound identification. Other databases for mass spectral comparison of volatile compounds have been developed by Adams⁵⁹ and König et al.⁶³ The MassFinder software, by König et al., allows the comparison of GC-MS data with those of the provided mass spectral library as well as retention indices obtained under identical instrumental and experimental conditions. The MassFinder library contains approximately 2000 spectra of monoterpene, sesquiterpene, diterpene, aliphatic, and aromatic plant volatiles. In addition, MS data for newly identified compounds can be incorporated into the library. Despite the convenient use of mass spectral library data, an unambiguous identification of a compound can only be achieved by the comparison of its mass spectrum with that of an authentic standard analyzed on the same column and the determination of Kovats indices on at least two columns with different polarities.

Tandem MS systems have been established to allow separate analyses of single compounds of complex GC peaks.⁴⁷ For example, GC-tandem MS was applied to determine the floral scent composition of *Cucurbita pepo* flowers.⁶⁴ Moreover,

GC-MS analysis can be complemented by capillary GC-FT-IR, for example, for the differentiation of closely related isomers with very similar EI mass spectra.^{47,65} Since FT-IR provides information on the intact molecular structure, unique spectra even for similar isomers can be obtained. The spectroscopic method has been applied for the identification of different floral volatiles.^{66,67} Drawbacks of GC-FT-IR are difficulties in quantification and time-consuming data interpretation, although a growing collection of data is provided by the Sadtler database (Sadler Division of Bio-Rad, Philadelphia, PA, USA).

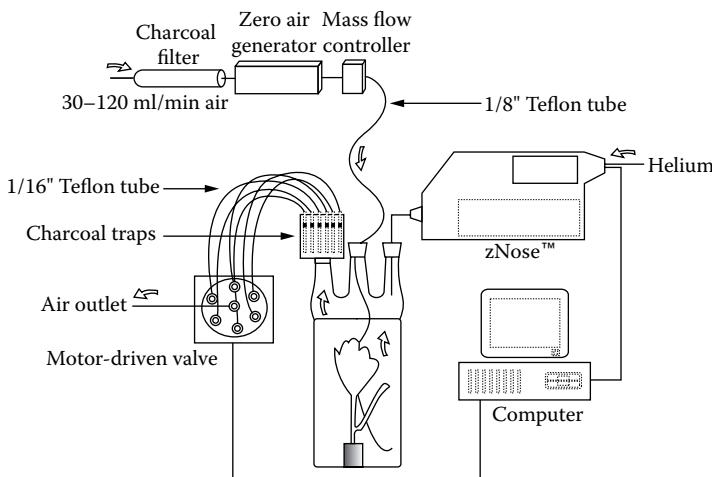
1.5.1 ENANTIOSELECTIVE GC, MULTIDIMENSIONAL GC

The chirality of floral scent compounds can be crucial for the olfactory response of pollinators and herbivores. Hence determining the enantiomeric composition of floral volatiles is critical in understanding plant-animal interactions. Since the 1990s, enantioselective capillary columns with chiral phases, such as different hydrophobic cyclodextrin derivatives, have been developed for enantiomer resolution of a variety of chiral volatile compounds, primarily from essential oils.^{68,69} As a general rule, polar compounds are better resolved on acylated cyclodextrin derivatives, while non-polar analytes are better separated on prealkylated cyclodextrin derivatives.⁶⁹ König et al. have assembled an enormous amount of data for the identification and enantiomeric recognition of hundreds of sesquiterpene hydrocarbons.⁷⁰⁻⁷³ Other examples for the application of cyclodextrin derivatives in flavor and fragrance analysis were documented by Schreier et al.⁷⁴

In situations where complex volatile mixtures cannot be sufficiently separated on a single chiral column, often two-dimensional capillary GC is employed. In this approach compounds are first separated on a conventional column. Then fractions containing compounds eluting from the first column (heartcuts) are directed to the chiral column as the second dimension. The redirected flow might need to be refocused at the start of the second column by cryotrapping. Borg-Karlsson et al.⁷⁵ applied a multidimensional GC system to determine the enantiomeric purity of linalool oxides in the floral fragrance of the early flowering shrub *Daphne mezereum*. The system consisted of two gas chromatographs with the first chromatograph housing a DB-WAX column and the second containing two enantioselective β -cyclodextrin columns. The two chiral columns can be used in parallel to ensure optimal enantiomeric resolution. Besides their application in chiral analysis, several other multidimensional GC systems or comprehensive GCxGC systems with directly coupled columns have been developed, particularly in the field of essential oil analysis, allowing increased resolution and improved quantitation or identification of volatile components.⁴⁹

1.6 STRUCTURE ELUCIDATION OF VOLATILE COMPOUNDS

For structure elucidation of unknown volatile compounds usually multiple analytical steps need to be considered. According to König and Hochmuth,⁶⁹ in only a few cases might simple mass spectra allow a direct derivation of the corresponding structure.


Most often, sufficient amounts of single compounds need to be isolated for one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopic techniques. Preparative isolation can be accomplished by multiple chromatographic steps including preparative-packed GC columns and thick-film capillary columns with highly selective cyclodextrin matrices. Recently, a simple, efficient NMR sample preparation technique for volatile chemicals has been described using a micropreparative GC system.⁷⁶ The absolute configuration of a new compound can be determined by comparison to a synthetic reference compound can be chemical correlation using enantioselective GC. Further details regarding structure elucidation are given elsewhere⁶⁹ and go beyond the scope of this chapter.

1.7 VOLATILE ANALYSIS TECHNIQUES WITH HIGH TIME RESOLUTION

A detailed understanding of the regulatory mechanisms governing floral volatile biosynthesis and emissions, such as circadian or diurnal control regimes, require analysis techniques that monitor volatile emission changes with appropriate time resolution. Computer-assisted and online dynamic headspace trapping systems are capable of collecting volatiles in hourly or shorter time intervals (see [Section 1.2.2.4](#)). However, trapped volatiles are usually desorbed and subsequently analyzed by GC, which presents a time-limiting factor. Recently new automated analytical systems have been developed that allow highly sensitive, ultrafast volatile analyses and hence represent promising tools for continuous monitoring of plant volatile emissions.

1.7.1 FAST AND TRANSPORTABLE GC (zNose)

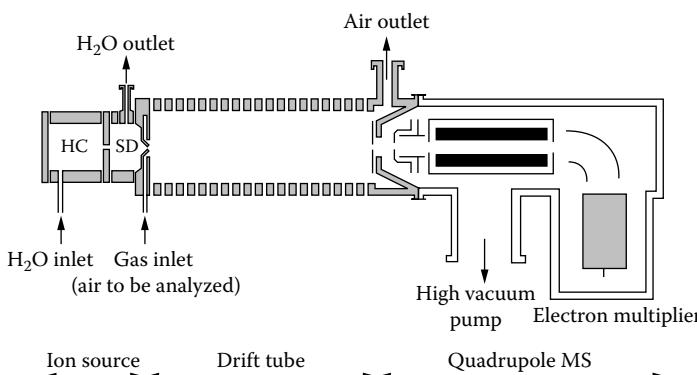
In recent years, efforts have been made to establish faster GC systems as well as miniaturized GC instruments.^{77,78} A recently developed portable GC system, the zNose™ (Electronic Sensor Technology, Newbury Park, CA), has been applied to the analysis of plant volatiles including floral scent⁷⁹ ([Figure 1.5](#)). The zNose separates compounds by fast GC and operates with a highly sensitive surface acoustic wave (SAW) quartz microbalance detector. The detection principle is based on condensation of the analyte on the surface of an oscillating crystal, leading to an increase in oscillator mass and a reduction in the vibrational frequency proportional to the amount of condensate. The temperature of the SAW detector influences the residence time of the compound on the detector surface and is critical for sensitivity and linear detector response.⁷⁹ The high sensitivity of the SAW detector (in the ppbv range) drastically reduces the volatile sampling and preconcentration time of the system. Volatiles are sampled in a small air volume for 20 to 40 sec on a Tenax trap. After rapid thermal desorption, compounds are separated on a capillary 1 or 5 m DB-5 GC column by a defined temperature program before they are monitored and quantified by the SAW detector. The short operation time allows the collection of air samples in time intervals as short as 3 min. Sampling, analysis, and storage of data are fully automated, thus volatile analyses over longer time periods are possible without supervision.

FIGURE 1.5 Volatile monitoring system according to Kunert et al.,⁷⁹ combining zNose™ analysis with conventional headspace sampling on activated charcoal traps.

Kunert et al.⁷⁹ measured the diurnal emission of volatiles from flowers of the cactus *Rebutia fabrisii* by placing plants in a 2 l glass vessel with a continuous flow of purified air at 30 ml/min. Air samples were taken by the zNose within 40 sec in 30 min intervals. For comparison, volatiles were collected simultaneously in 4 h intervals on charcoal traps for GC-MS analysis. Monitoring the rhythmic emission of floral volatiles with the zNose was comparable to conventional GC analysis, but showed a clearly improved time resolution. An additional advantage of the zNose is its portability, enabling applications not only in the laboratory but also in field experiments. As a drawback of the system, the SAW detector does not allow structure evaluation; therefore, volatiles need to be analyzed by GC-MS prior to calibration of the system with authentic standards. Moreover, the short GC column reduces the compound resolution. Thus monitoring changes of volatiles with similar elution profiles is limited.

In summary, the zNose can be regarded as a tool for quick quantitative estimation of known volatile profiles, making it applicable for high-throughput screenings of natural variants or mutant populations. Given the large time resolution, the system is suitable for monitoring kinetics of volatile emissions from floral and vegetative tissues dependent on diurnal and circadian rhythms and in response to feeding damage or abiotic factors such as light and temperature changes.

1.7.2 PROTON TRANSFER REACTION MASS SPECTROMETRY


Proton transfer reaction mass spectrometry (PTR-MS) analysis technology was developed more than 5 years ago at the University of Innsbruck by Lindner et al.⁸⁰ PTR-MS systems operate independently of GC separation and allow online measurements of volatile organic compounds with concentrations in the pptv range. Originally developed for monitoring changes of volatile organic compounds in the atmosphere, in food control, and in medical analyses, PTR-MS is increasingly applied

for real-time analysis of volatile emissions from plants, although no applications have been reported so far for floral scent analysis. PTR-MS instruments are still relatively expensive and their operation requires extended training by experienced researchers.

For detection by PTR-MS, volatiles undergo a chemical ionization by proton transfer reactions with H_3O^+ ions. Differences in proton affinities allow a proton transfer from H_3O^+ ions to a large number of organic volatiles (e.g., alkenes, aldehydes, ketones, alcohols, aromatics, nitriles, sulfides), but prevent a reaction of H_3O^+ ions with the main constituents of the air. The proton transfer reaction takes place under defined conditions in a homogeneous electric field applied to a drift tube (Figure 1.6). Ions exiting the tube are then mass analyzed by a quadrupole mass spectrometer. The soft ionization of compounds by protonation causes only low fragmentation, hence mainly one product ion species occurs for each reactant. The extremely fast time response of the instrument results from the time the volatiles spend in the drift tube, which is less than 1 sec.

The PTR-MS technique has been applied in recent years to measure fluctuations of volatile emissions from various plants. Usually, whole plants or plant parts are enclosed in glass containers, inert bags, or dynamic cuvette systems with a continuous airstream and controlled temperature, humidity, and light conditions, and aliquots of the exiting air are analyzed by PTR-MS. Emissions of volatiles including isoprene and monoterpenes from trees and other plants have been monitored under laboratory and field conditions in response to changes in abiotic factors, such as light and temperature, or biotic factors such as pathogen attack.^{81,82}

Besides its use in online qualitative and quantitative analyses of plant volatile organic compounds, PTR-MS has become a valuable tool for investigating the biosynthesis of volatiles using isotope-labeled precursors. For example, carbon sources other than photosynthetically fixed carbon dioxide (CO_2), involved in the biosynthesis of isoprene in poplar leaves, were identified by online measurements of differentially labeled isoprene isotopes during exposure of the plant to ^{13}C -labeled and unlabeled CO_2 and feeding of ^{13}C -labeled and unlabeled glucose.⁸³ Similar

FIGURE 1.6 Principle scheme of the PTR-MS apparatus according to Lindinger et al.⁸⁰ (modified). HC, hollow cathode; SD, source drift region.

experimental designs might be applicable to elucidate carbon pools or precursors in biosynthesis pathways of various floral volatiles. In addition, fast metabolic changes in response to enzyme inhibitor applications could be determined.

As a consequence of the ability to perform real-time analyses and measure volatiles with high sensitivity, the PTR-MS system may also qualify as a tool for fast screening of floral emissions from mutants and ecotypes. However, the analysis of volatile mixtures is limited by the ability to determine only the molecular mass of products. Compounds of the same molecular weight cannot be identified separately, therefore additional analysis by GC either in parallel or coupled with the PTR-MS instrument is necessary.⁸⁴ Future developments might improve compound identification by combining PTR-MS with an ion trap mass spectrometer, allowing MS/MS performance to distinguish between isomers and other isobars.⁸⁵

1.8 CONCLUSION

The analysis of plant volatiles, including those emitted from floral tissues, has continuously improved over the past 10 to 20 years. The development of materials with high adsorbent capacities for volatile compounds has allowed efficient trapping of volatiles and volatile blends with different chemicophysical properties. Equally important, improvements in gas chromatographic separation, the establishment of highly sensitive spectroscopic detection methods, and expanding mass spectral libraries have laid the foundation for the detection and identification of complex mixtures of volatiles as well as trace amounts of floral volatile components. We have discussed a variety of different volatile collection methods that have been developed, and together they give today's researcher the flexibility of selecting the best method suitable for a particular application. Online analysis techniques are increasingly important for monitoring the kinetics of floral volatile emissions and learning more about the biosynthetic pathways of different scent components. However, greater portability of volatile collection techniques combined with high sensitivity and large time resolution would be desirable to measure floral volatiles in the field in their natural environment, which will further improve our understanding of floral volatile biology.

REFERENCES

Bicchi, C. and Joulain, D., Headspace gas chromatographic analysis of medicinal and aromatic plants and flowers, *Flav. Fragr. J.* 14, 185, 1990.

Kaiser, R., Trapping, investigation, and reconstitution of flower scents, in *Perfumes: Art, Science, Technology*, Müller, P.M. and Lamparsky, D., Eds., Elsevier Applied Science, London, 1991, p. 213.

Dobson, H.E.M., Analysis of flower and pollen volatiles, in *Essential Oils and Waxes: Modern Methods of Plant Analysis*, vol. 12, Linskens, H.F. and Jackson, J.F., Eds., Springer, Berlin, 1991, p. 231.

Knudsen, J.T., Tollsten, L., and Bergström, G., Floral scent: a checklist of volatile compounds isolated by headspace techniques, *Phytochemistry* 33, 253, 1993.

Jakobsen, H.B., The preisolation phase of *in situ* headspace analysis: Methods and perspectives. In *Essential Oils and Waxes: Modern Methods of Plant Analysis*, vol. 19, Linskens, H.F. and Jackson J.F., Eds., Springer, Berlin, 1997, p. 1.

Millar, J.G. and Sims, J.J., Preparation, cleanup, and preliminary fractionation of extracts, in *Methods in Chemical Ecology*, Millar, J.G. and Haynes, K.F., Eds., Kluwer Academic, Boston, 1998, p. 1.

Raguso, R.A. and Pellmyr, O., Dynamic headspace analysis of floral volatiles: a comparison of methods, *Oikos* 81, 238, 1998.

Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J., Biosynthesis and emission of terpenoid volatiles from *Arabidopsis* flowers, *Plant Cell* 15, 481, 2003.

Effmert, U., Große, J., Röse, U.S.R., Ehrig, F., Kägi, R., and Piechulla, B., Volatile composition, emission pattern, and localization of floral scent emission in *Mirabilis jalapa* (Nyctaginaceae), *Am. J. Bot.* 92, 2, 2005.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Lofstedt, C., Hansson, B.S., Ibarra, F., and Franche, W., Orchid pollination by sexual swindle, *Nature* 399, 421, 1999.

Schiestl, F.P. and Ayasse, M., Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximizing reproductive success?, *Oecologia* 126, 531, 2001.

Matile, P. and Altenburger, P., Rhythms of fragrance emission in flowers, *Planta* 174, 242, 1988.

Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A., and Hildebrand, D.F., Volatiles from flowers of *Nicotiana sylvestris*, *N. otophora* and *Malus x domestica*: headspace components and day/night changes in their relative concentrations, *Phytochemistry* 29, 2473, 1990.

Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A., and Hildebrand, D.F., Circadian rhythm of volatile emission from flowers of *Nicotiana sylvestris* and *N. suaveolens*, *Physiol. Plant.* 83, 492, 1991.

Raguso, R.A. and Pichersky, E., Floral volatiles from *Clarkia breweri* and *C. concinna* (Onagraceae): recent evolution of floral scent and moth pollination, *Plant Syst. Evol.* 194, 55, 1995.

Tasdemir, D., Demirci, B., Demirci, F., Donmez, A.A., Baser, K.H., and Ruedi, P., Analysis of the volatile components of five Turkish rhododendron species by headspace solid-phase microextraction and GC-MS, *Z. Naturforsch. [C]* 58, 797, 2003.

Custodio, L., Nogueira, J.M.F., and Romano, A., Sex and developmental stage of carob flowers affects composition of volatiles, *J. Hort. Sci. Biotechnol.* 79, 689, 2004.

Demirci, F. and Baser, K.H.C., The volatiles of fresh-cut *Osyris alba* L. flowers, *Flav. Fragr. J.* 19, 72, 2004.

Omata, A. et al. Volatile components of TO-YO-RAN flowers (*Cymbidium faberi* and *Cymbidium virescens*), *Agric. Biol. Chem.* 54, 1029, 1990.

Boland, W., Ney, P., Jaenicke, L., and Gassmann, G., A “closed-loop-stripping” technique as a versatile tool for metabolic studies of volatiles, in Schreier, P., Ed., *Analysis of Volatiles*, Walter de Gruyter, New York, 1984, p. 371.

Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W., Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway, *Plant Physiol.* 121, 153, 1999.

Engelberth, J., Koch, T., Schüler, G., Bachmann, N., Rechtenbach, J., and Boland, W., Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean, *Plant Physiol.* 125, 369, 2001.

Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from *Arabidopsis* flowers, *Plant J.* 42, 757, 2005.

Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., and Gershenzon, J., The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers, *Proc. Natl. Acad. Sci. USA* 102, 933, 2005.

Burger, B.V., Munro, Z.M., and Visser, J.H., Determination of plant volatiles 1: Analysis of the insect-attracting allomone of the parasitic plant *Hydnora africana* using Grob-Habich activated charcoal traps, *J. High Resolut. Chromatogr.* 11, 496, 1988.

Kaiser, R. and Kraft, P., Neue und ungewöhnliche Naturstoffe faszinierender Blütendüfte, *Chemie in unsere Zeit* 35, 8, 2001.

Turlings, T.C.J., Tumlinson, J.H., Heath, R.R., Proveaux, A.T., and Doolittle, R.E., Isolation and identification of allelochemicals that attract the larval parasitoid, *Cotesia marginiventris* (Cresson), to the microhabitat of one of its hosts, *J. Chem. Ecol.* 17, 2235, 1991.

Heath, B. and Manukian, A., An automated system for use in collecting volatile chemicals released from plants, *J. Chem. Ecol.* 20, 593, 1994.

Röse, U.S.R., Manukian, A., Heath, R.R., and Tumlinson, J.H., Volatile semiochemicals released from undamaged cotton leaves: a systemic response of living plants to caterpillar damage, *Plant Physiol.* 111, 487, 1996.

Heath, B. and Manukian, A., Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification, *J. Chem. Ecol.* 18, 1209, 1992.

Manukian, A. and Heath, B., Development of an automated data collection and environmental monitoring system, *Sci. Comput. Autom.* 9, 27, 1993.

Agelopoulos, N.G., Hooper, A., Maniar, S., Pickett, J., and Wadhams, L., A novel approach for isolation of volatile chemicals released by individual leaves of a plant in situ, *J. Chem. Ecol.* 25, 1411, 1999.

Vercammen, J., Sandra, P., Baltussen, E., Sandra, T., and David, F., Considerations on static and dynamic sorptive and adsorptive sampling to monitor volatiles emitted by living plants, *J. High Resolut. Chromatogr.* 23, 547, 2000.

Baltussen, E. et al., Sorption tubes packed with polydimethylsiloxane: a new and promising technique for the preconcentration of volatiles and semivolatiles from air and gaseous samples, *J. High Resolut. Chromatogr.* 21, 333, 1998.

Vercammen, J., Pham-Tuan, H., and Sandra, P., Automated dynamic sampling for the on-line monitoring of biogenic emissions from living organisms, *J. Chromatogr. A* 930, 39, 2001.

Heiden, A.C. and Wildt, J., Automatisierte Messungen zur Emission biogener Kohlenwasserstoffe in pptV-Mischungsverhältnissen mit Gerstel Online-TDS G, *Gerstel Aktuell* 18, 2–3, 1997.

Heiden, A.C., Kobel, K., and Wildt, J., Einfluß verschiedener Stressfaktoren auf die Emission pflanzlicher flüchtiger organischer Verbindungen, *Ph.D. dissertation*, University Duisburg, 1998.

Surburg, H., Guentert, M., and Harder, H., Volatile compounds from flowers. Analytical and olfactory aspects, in Teranishi, R., Butterly, R.G., and Sugisawa, H., Eds., *Bioactive Volatile Compounds from Plants*, American Chemical Society, Washington, DC, 1993, p. 168.

Dettmer, K. and Engewald, W., Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds, *Anal. Bioanal. Chem.* 373, 490, 2002.

Williams, A.A., May, H.V., and Tucknott, O.G., Observations on the use of porous polymers for collecting volatiles from synthetic mixtures reminiscent of fermented ciders, *J. Sci. Food Agric.* 29, 1041, 1978.

MacLeod, G. and Ames, J.M., Comparative assessment of the artifact background on thermal desorption of Tenax GC and Tenax TA, *J. Chromatogr.* 355, 393, 1986.

Stromvall, A.M. and Petersson, G., Protection of terpenes against oxidative and acid decomposition on adsorbent cartridges, *J. Chromatogr.* 589, 385, 1992.

Peters, R.J.B., Duivenbode, J.A.D., Duyzer, J.H., and Verhagen, H.L.M., The determination of terpenes in forest air, *Atmos. Environ.* 28, 2413, 1994.

Lewis, M.J., and Williams, A.A., Potential artifacts from porous polymers for collecting aroma components, *J. Sci. Food Agric.* 31, 1017, 1980.

Sturaro, A., Parvoli, G., and Doretti, L., Artifacts produced by Porapak Q sorbent tubes on solvent desorption, *Chromatographia* 33, 53, 1992.

Williams, N.H. and Whitten, W.M., Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade, *Biol. Bull.* 164, 355, 1983.

Ragunathan, N., Krock, K.A., Klawun, C., Sasaki, T.A., and Wilkins, C.L., Gas chromatography with spectroscopic detectors, *J. Chromatogr. A* 856, 349, 1999.

Lockwood, G.B., Techniques for gas chromatography of volatile terpenoids from a range of matrices, *J. Chromatogr. A* 936, 23, 2001.

Marriott, P.J., Shellie, R., and Cornwell, C., Gas chromatographic technologies for the analysis of essential oils, *J. Chromatogr. A* 936, 1, 2001.

Dewulf, J. and van Langenhove, H., Analysis of volatile organic compounds using gas chromatography, *Trends Anal. Chem.* 21, 637, 2002.

Merfort, I., Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones, *J. Chromatogr. A* 967, 115, 2002.

Eiceman, G.A., Gardea-Torresday, J., Overton, E., Carney, K., and Dorman, F., Fundamental reviews: gas chromatography, *Anal. Chem.* 74, 2771, 2002.

Eiceman, G.A., Gardea-Torresday, J., Overton, E., Carney, K., and Dorman, F., Fundamental reviews: gas chromatography, *Anal. Chem.* 76, 3387, 2004.

Taylor, T., Sample injection systems, in Handley, A.J., and Adlard, E.R., Eds., *Gas Chromatographic Techniques and Applications*, CRC Press, Boca Raton, FL, 2001, p. 52.

de Kraker J-W., Franssen, M.C., de Groot, A., Shibata, T., and Bouwmeester, H.J., Germacrenes from fresh costus roots, *Phytochemistry* 58, 481, 2001.

Vickers, A.J. and Rood, D., Advances in column technology, in Handley, A.J. and Adlard, E.R., Eds., *Gas Chromatographic Techniques and Applications*, CRC Press, Boca Raton, 2001, p. 91.

Jennings, W. and Shibamoto, T., *Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography*, Academic Press, New York, 1980.

Davies, N.W., Gas-chromatographic retention indexes of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20 M phases, *J. Chromatogr.* 503, 1, 1990.

Adams, R.P., *Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry*, 3rd ed., Allured Publishing, Carol Stream, IL, 2001.

Knudsen, J.T., Tollsten, L., Groth, I., Bergström, G., and Raguso, R.A., Trends in floral scent chemistry in pollination syndromes: floral scent composition in hummingbird-pollinated taxa, *Bot. J. Linn Soc.* 146, 191, 2004.

Sharkey, T.D., Loreto, F., and Delwiche, C.F., High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves, *Plant Cell Environ.* 14, 333, 1991.

Loreto, F., Nascetti, P., Graverini, A., and Mannozzi, M., Emission and content of monoterpenes in intact and wounded needles of the Mediterranean pine, *Pinus pinea*, *Funct. Ecol.* 14, 589, 2000.

König, W.A., Joulain, D., and Hochmuth, D.H., Terpenoids and related constituents of essential oils, version 3, 2004, <http://www.massfinder.com>.

Granero, A.M., Gonzalez, F.J., Frenich, A.G., Sanz, J.M., Vidal, J.L., Single step determination of fragrances in *Cucurbita* flowers by coupling headspace solid-phase microextraction low-pressure gas chromatography-tandem mass spectrometry, *J. Chromatogr. A* 1045, 173, 2004.

Visser, T., FT-IR detection in gas chromatography, *Trends Anal. Chem.* 21, 627, 2002.

Joulain, D., Cryogenic vacuum trapping of scents from temperate and tropical flowers, in *Bioactive Volatile Compounds from Plants*, Teranishi, R., Butterly, R.G., and Sugisawa, H., Eds., American Chemical Society, Washington, DC, 1993, p. 187.

Joulain, D. and Tabacchi, R., Two volatile β -chromenes from *Wisteria sinensis* flowers, *Phytochemistry* 37, 1769, 1994.

Bicchi, C., D'Amato, A., and Rubiolo, P., Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields. *J. Chromatogr. A* 843, 99, 1999.

König, W.A. and Hochmuth, D.H., Enantioselective gas chromatography in flavor and fragrance analysis: strategies for the identification of known and unknown plant volatiles, *J. Chromatogr. Sci.* 42, 423, 2004.

Joulain, D. and König, W.A., *The Atlas of Spectral Data of Sesquiterpene Hydrocarbons*, E.B.-Verlag, Hamburg, 1998.

König, W.A., Collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases, *J. High Resolut. Chromatogr.* 16, 312, 1993.

König, W.A., Collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases, *J. High Resolut. Chromatogr.* 16, 338, 1993.

König, W.A., Collection of enantiomer separation factors obtained by capillary gas chromatography on chiral stationary phases, *J. High Resolut. Chromatogr.* 16, 569, 1993.

Schreier, P., Bernreuther, A., and Huffner, A., *Analysis of Chiral Organic Molecules. Methodology and Applications*, de Gruyter, Berlin, 1995.

Borg-Karlsson, A.-K., Unelius, C.R., Valterova, I., and Nilsson, L.A., Floral fragrance chemistry in the early flowering shrub *Daphne mezereum*, *Phytochemistry* 41, 1477, 1996.

Nojima, S., Kiemle, D.J., Webster, F.X., and Roelofs, W.L., Submicro scale NMR sample preparation for volatile chemicals, *J. Chem. Ecol.* 30, 2153, 2004.

Yashin, Y.I. and Yashin, Y.A., Miniaturization of gas-chromatographic instruments, *J. Anal. Chem.* 56, 794, 2001.

Matisova, E. and Domotorova, M., Fast gas chromatography and its use in trace analysis, *J. Chromatogr. A* 1000, 199, 2003.

Kunert, M., Biedermann, A., Koch, T., and Boland, W., Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production, *J. Sep. Sci.* 25, 677, 2002.

Lindinger, W., Hansel, A., and Jordan, A., On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control and environmental research, *Int. J. Mass Spectrom. Ion Processes* 173, 191, 1998.

Hayward, S., Hewitt, C.N., Sartin, J.H., and Owen, S.M., Performance characteristics and applications of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds in ambient air, *Environ. Sci. Technol.* 36, 1554, 2002.

Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J.M., Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in *Arabidopsis*, *Plant Physiol.* 135, 47, 2004.

Schnitzler, J.-P., Graus, M., Kreuzwieser, J., Heizmann, U., Rennenberg, H., Wisthaler, A., and Hansel, A., Contribution of different carbon sources to isoprene biosynthesis in poplar leaves, *Plant Physiol.* 135, 152, 2004.

Warneke, C., De Gouw, J.A., Kuster, W.C., Goldan, P.D., and Fall, R., Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method, *Environ. Sci. Technol.* 37, 2494, 2003.

Prazeller, P., Palmer, P.T., Bosaini, E., Jobson, T., and Alexander, M., Proton transfer reaction ion trap mass spectrometer, *Rapid Commun. Mass Spectrom.* 17, 1593, 2003.

Kaiser, R., On the scents of orchids, in *Bioactive Volatile Compounds from Plants*, Teranishi, R., Butterly, R.G. and Sugisawa, H., Eds., American Chemical Society, Washington, DC, 1993, p. 240.

Kaiser, R., *The Scents of Orchids*, Elsevier, Amsterdam, 1993.

Kaiser, R. and Lamparsky, D., Constituants azotés en trace de quelques absolues de fleurs et leurs head spaces correspondants, In *Proceedings of the 8th International Congress of Essential Oils (Cannes, 1980)*, Fedarom, Grasse, France, 1982, p. 287.

Kaiser, R., New volatile constituents of *Jasminum sambac* (L.) Aiton, in *Flavors and Fragrances: A World Perspective*, *Proceedings of the 10th International Congress of*

Essential Oils (Washington, DC, 1986), Lawrence, B.M., Mookherjee, B.D., and Willis, B.J., Eds., Elsevier Science, Amsterdam, 1988, p. 669.

Kaiser, R. and Nussbaumer, C., Dehydrogeosmin, a novel compound occurring in the flower scent of various species of Cactaceae, *Helv. Chim. Acta* 73, 133, 1990.

Kaiser, R., Trapping, investigation and reconstitution of flower scents, in *Perfumes: Art, Science and Technology*, Müller, P.M. and Lamparsky, D., Eds., Elsevier Applied Science, London, 1991, p. 213.

Kaiser, R. and Tollsten, L., An introduction to the scent of cacti, *Flav. Fragr. J.* 10, 153, 1995.

Kaiser, R., New and uncommon volatile compounds in floral scents, in *Proceedings of the 13th International Congress of Flavours, Fragrances and Essential Oils (Istanbul, Turkey, 1995)*, Baser, K.H.C., Ed., AREP, Istanbul, 1995, p. 135.

Kaiser, R., Environmental scents at the Ligurian coast, *Perfumer Flav.* 22, 7, 1997.

Kaiser, R., New or uncommon volatile compounds in the most diverse natural scents, *Rev Ital Eppos* 18, 18, 1997.

Kaiser, R., Scents from rain forests, *Chimia* 54, 346, 2000.

Schultz, K., Kaiser, R., and Knudsen, J.T., Cyclanthone and derivatives, new natural products in the flower scent of *Cyclanthus bipartitus* Poit, *Flav. Fragr. J.* 14, 185, 1999.

Kaiser, R. and Kraft, P., Neue und ungewöhnliche Naturstoffe faszinierender Blütendüfte, *Chem. Zeit* 35, 8, 2001.

Kaiser, R., Carotenoid-derived aroma compounds in flower scents, in Winterhalter, P. and Rouseff, R., Eds., *Carotenoid-Derived Aroma Compounds*, American Chemical Society, Washington, DC, 2002, p. 160.

Bicchi, C. and Joulain, D., Headspace-gas chromatographic analysis of medicinal and aromatic plants and flowers, *Flav. Fragr. J.* 5, 131, 1990.

Bozan, B., Ozek, T., Kurkcuoglu, M., Kirimer, N., and Baser, K.H.C., The analysis of essential oil and headspace volatiles of the flowers of *Pelargonium endlicherianum* used as an anthelmintic in folk medicine, *Plant. Med.* 65, 781, 1999.

Brunke, E.J., Hammerschmidt, F.J., and Schmaus, G., Flower scent of some traditional medical plants, *Bioactive Volatile Compounds from Plants*, in Teranishi, R., Buttery, R.G., and Sugisawa, H., Eds., American Chemical Society, Washington, DC, 1993, p. 282.

Knudsen, J.T., Eriksson, R., Gershenson, J., and Ståhl, B., Diversity and distribution of floral scent, *Bot. Rev.*, 72, 1, 2006.

Gershenson, J. and Kreis, W., Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins, in *Biochemistry of Plant Secondary Metabolism*, Wink, M., Ed., Sheffield Academic Press, Sheffield, 1999, p. 222.

Rodriguez-Concepcion, M. and Boronat, A., Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics, *Plant Physiol.* 130, 1079, 2002.

Croteau, R. and Karp, F., Origin of natural odorants, in *Perfumes: Art, Science and Technology*, Müller, P.M. and Lamparsky, D., Eds., Elsevier Applied Science, London, 1991, p. 101.

Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E., and Gershenson, J., Biosynthesis and emission of volatiles from *Arabidopsis* flowers, *Plant Cell* 15, 1, 2003.

Eugster, C.H., Hürlimann, H., and Leuenberger, H.J., Crocetindialdehyd und crocetinhalbaldehyd als Blütenfarbstoffe von *Jacquinia angustifolia*, *Helv. Chem. Acta* 52, 89, 1969.

Eugster, C.H. and Märki-Fischer, E., The chemistry of rose pigments, *Angew. Chem.* 30, 654, 1991.

Donath, J. and Boland, W., Biosynthesis of acyclic homoterpenes in higher plants parallels steroid hormone metabolism, *J. Plant Physiol.* 143, 473, 1994.

Donath, J. and Boland, W., Biosynthesis of acyclic homoterpenes: enzyme selectivity and absolute configuration of the nerolidol precursor, *Phytochemistry* 39, 785, 1995.

Paré, P.W. and Tumlinson, J.H., Plant volatiles as a defense against insect herbivores, *Plant Physiol.* 121, 325, 1999.

Jarvis, A.P., Schaaf, O., and Oldham, N.J., 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acid and salicylic acid but benzaldehyde is not, *Planta* 212, 119, 2000.

Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M., Isochorismate synthase is required to synthesize salicylic acid for plant defence, *Nature* 414, 562, 2001.

Rowan, D.D., Lane, H.P., Allen, J.M., Fielder, S., and Hunt, M., Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium-labeled substrates, *J. Agric. Food Chem.* 44, 3276, 1996.

Frey, M., Stettner, C., Pare, P.W., Schmelz, E.A., Tumlinson, J.H., and Gierl, A., An herbivore elicitor activates the gene for indole emission in maize, *Proc. Natl. Acad. Sci. USA* 97, 14801, 2000.

Joulain, D. and König, W.A., *The Atlas of Spectral Data of Sesquiterpene Hydrocarbons*, E.B.-Verlag, Hamburg, 1998.

Raguso, R. and Pellmyr, O., Dynamic headspace analysis of floral volatiles: a comparison of methods, *Oikos* 81, 238, 1998.

Adams, R.P., *Identification of Essential Oils by Ion Trap Mass Spectroscopy*, Academic Press, San Diego, 1989.

Bergström, G., Groth, I., Pellmyr, O., Endress, P. K., Thien, L. B., Hübener, A., and Wittko, F., Chemical basis for a highly specific mutualism: chiral esters attract pollinating beetles in Eupomatiaceae, *Phytochemistry* 30, 3221, 1991.

Borg-Karlson, A., Englund, F.O., and Unelius, C.R., Dimethyl oligosulphides, major volatiles released from *Sauromatum guttatum* and *Phallus impudicus*, *Phytochemistry* 35, 321, 1994.

Borg-Karlson, A.-K., Valterová, I., and Nilsson, A., Volatile compounds from flowers of six species in the family Apiaceae: Boquets for different pollinators, *Phytochemistry* 35, 111, 1994.

Borg-Karlson, A.-K., Unelius, C.R., Valterova, I., and Nilsson, L.A., Floral fragrance chemistry in the early flowering shrub *Daphne mezereum*, *Phytochemistry* 41, 1477, 1996.

Mori, K., Separation of enantiomers and determination of absolute configuration, in *Methods in Chemical Ecology*, vol. 1, *Chemical Methods*, Millar, J.G. and Haynes, K.F., Eds., Kluwer Academic, Norwell, MA, 1998, p. 295.

Francke, W., Hindorf, G., and Reith, W., Mass-spectrometric fragmentation of alkyl-1,6-dioxaspiro[4.5]decanes, *Naturwissenschaften* 66, 619, 1979.

Fráter, G., Bajgrowicz, J.A., and Kraft, P., Fragrance chemistry, *Tetrahedron* 54, 7633, 1998.

Wise, M.L., Savage, T.J., Katahira, E., and Croteau, R., Monoterpene synthases from common sage (*Salvia officinalis*), *J. Biol. Chem.* 273, 1491, 1998.

Raguso, R.A., Floral scent, olfaction, and scent driven foraging behavior, in *Cognitive Ecology of Pollination*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, Cambridge, 2001, p. 83.

Azuma, H., Toyota, M., and Asakawa, Y., Intraspecific variation of floral scent chemistry in *Magnolia kobus* DC. (Magnoliaceae), *J. Plant Res.* 114, 411, 2001.

Dufay, M., Hossaert-McKey, M., and Anstett, M.-C., Temporal and sexual variation in leaf-produced pollinator-attracting odours in the dwarf palm, *Oecologia* 139, 392, 2004.

Dötterl, S., Wolfe, L.M., and Jürgens, A., Qualitative and quantitative analyses of flower scent in *Silene latifolia*, *Phytochemistry* 66, 195, 2005.

Grison-Pigé, L., Bessière, J.M., Turlings, C.J., Kjellberg, F., Roy, J., and Hossaert-McKey, M., Limited intersex mimicry of floral odour in *Ficus carica*, *Funct. Ecol.* 15, 551, 2001.

Kite, G.C., The floral odour of *Arum maculatum*, *Biochem. Syst. Ecol.* 23, 343, 1995.

Knudsen, J.T., Variation in floral scent composition within and between populations of *Geonoma macrostachys* (Arecaceae) in the western Amazon, *Am. J. Bot.* 89, 1772, 2002.

Olesen, J.M. and Knudsen, J.T., Scent profiles of flower colour morphs of *Corydalis cava* (Fumariaceae) in relation to foraging behaviour of bumblebee queens (*Bombus terrestris*), *Biochem. Syst. Ecol.* 22, 231, 1994.

Omata, A., Yomogida, K., Nakamura, S., Ohta, T., Izawa, Y., and Watanabe, S., The odour of *Lotus* (Nelumbonaceae) flower, in *11th International Congress Of Essential Oils*, Bhattacharygas, L., Sen, N. and Sethi, K.L., Eds., Oxford: New Delhi, 1989, p. 43.

Pettersson, S. and Knudsen, J.T., Floral scent and nectar production in *Parkia biglobosa* Jacq. (Leguminosae: Mimosoideae), *Bot. J. Linn. Soc.* 135, 97, 2001.

Raguso, R. and Pichersky, E., Floral volatiles from *Clarkia breweri* and *C. concinna* (Onagraceae): recent evolution of floral scent and moth pollination, *Plant Syst. Evol.* 194, 55, 1995.

Dahl, Å.E., Wassgren, A.-B., and Bergström, G., Floral scents in *Hypecoum* Sect. *Hypecoum* (Papaveraceae): chemical composition and relevance to taxonomy and mating system, *Biochem. Syst. Ecol.* 18, 157, 1990.

Ervik, F., Tollsten, L., and Knudsen, J.T., Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae), *Plant Syst. Evol.* 217, 279, 1999.

Tollsten, L. and Bergström, L.G., Fragrance chemotypes in *Platanthera* (Orchidaceae)—the result of adaptation to pollinating moths?, *Nord. J. Bot.* 13, 607, 1993.

Tollsten, L. and Knudsen, J.T., Floral scent in dioecious *Salix* (Salicaceae)—a cue determining the pollination system?, *Plant Syst. Evol.* 182, 229, 1992.

Azuma, H., Toyota, M., Asakawa, Y., Yamaoka, R., García-Franco, J.G., Dieringer, G., Thien, L.B., and Kawano, S., Chemical divergence in floral scents of *Magnolia* and allied genera (Magnoliaceae), *Plant Species Biol.* 12, 69, 1997.

Barkman, T.J., Beaman, D.H., and Gage, J.A., Floral fragrance variation in *Cypripedium*: implications for evolutionary and ecological studies, *Phytochemistry* 44, 875, 1997.

Gerlach, G. and Schill, R., Fragrance analyses, an aid to taxonomic relationship of the genus *Coryanthes* (Orchidaceae), *Plant Syst. Evol.* 168, 159, 1989.

Gregg, K.B., Variation in floral fragrances and morphology: incipient speciation in *Cycnoches*?, *Bot. Gaz.* 144, 566, 1983.

Grison-Pigé, L., Hossaert-McKey, M., Greeff, J.M., and Bessière, J.M., Fig volatile compounds—a first comparative study, *Phytochemistry* 61, 61, 2002.

Jürgens, A. and Dötterl, S., Chemical composition of anther volatiles in Ranunculaceae: genera-specific profiles in *Anemone*, *Aquilegia*, *Caltha*, *Pulsatilla*, *Ranunculus*, and *Trollius* species, *Am. J. Bot.* 91, 1669, 2004.

Knudsen, J.T., Floral scent chemistry in geonomoid palms (Palmae: Geonomeae) and its importance in maintaining reproductive isolation, *Mem. N. Y. Bot. Gard.* 83, 141, 1999.

Knudsen, J.T., Tollsten, L., and Ervik, F., Flower scent and pollination in selected neotropical palms, *Plant Biol.* 3, 642, 2001.

Levin, R.A., Raguso, R.A., and McDade, L.A., Fragrance chemistry and pollinator affinities in Nyctaginaceae, *Phytochemistry* 58, 429, 2001.

Lindberg, A. B., Knudsen, J. T., and Olesen, J. M., Independence of floral morphology and scent chemistry as trait groups in a set of Passiflora species, in *The Scandinavian Association for Pollination Biology honours Knut Fgri.* Totland, Ö., Ed., *Det Norske Videnskaps-Akademis. I. Mat.-Naturv. Klasse. Ny Ser.*, Oslo.

Jürgens, A., Witt, T., and Gottsberger, G., Flower scent composition in *Dianthus* and *Saponaria* species (Caryophyllaceae) and its relevance for pollination biology and taxonomy, *Biochem. Syst. Ecol.* 31, 345, 2003.

Raguso, R.A., Levin, R.A., Foose, S.E., Holmberg, M.W., and McDade, L.A., Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in *Nicotiana*, *Phytochemistry* 63, 265, 2003.

Thien, L.B., Bernhardt, P., Gibbs, G.W., Pellmyr, O.M., Bergstrom, G., Groth, I., and McPherson, G., The pollination of *Zygogynum* (Winteraceae) by a moth, *Sabatinca* (Micropterigidae): an ancient association?, *Science* 227, 540, 1985.

Toyoda, T., Nohara, I., and Sato, T., Headspace analysis of volatile compounds from various citrus blossoms, *Bioactive Volatile Compounds from Plants*, in Teranishi, R., Buttery, R.G., and Sugisawa, H., Eds., American Chemical Society, Washington, DC, 1993, pp. 205.

Whitten, W.M. and Williams, N.H., Floral fragrances of *Stanhopea* (Orchidaceae), *Lindleyana* 7, 130, 1992.

Pichersky, E. and Gang, D.R., Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective, *Trends Plant Sci.* 5, 439, 2000.

Ishizaka, H., Yamada, H., and Sasaki, K., Volatile compounds in the flowers of *Cyclamen persicum*, *C. purpurascens* and their hybrids, *Sci. Hort.* 94, 125, 2002.

Loper, G.M., Differences in alfalfa flower volatiles among parent and F1 plants, *Crop Sci.* 16, 107, 1976.

Knudsen, J.T., Andersson, S., and Bergman, P., Floral scent attraction in *Geonoma macrostachys*, an understorey palm of the Amazonian rain forest, *Oikos* 85, 409, 1999.

Hansted, L., Jacobsen, H.B., and Olsen, C.E., Influence of temperature on the rhythmic emission of volatiles from *Ribes nigrum* in situ, *Plant Cell Environ.* 17, 1069, 1994.

Jakobsen, H.B. and Olsen, C.E., Influence of climatic factors on emission of volatiles in situ, *Planta* 192, 365, 1994.

Loper, G.M., and Berdel, R.L., Seasonal emanation of ocimene from alfalfa flowers with three irrigation treatments, *Crop Sci.* 18, 447, 1978.

Nielsen, J.K., Jakobsen, H.B., Hansen, P.F.K., Moller, J., and Olsen, C.E., Asynchronous rhythms in the emission of volatiles from *Hesperis matronalis* flowers, *Phytochemistry* 38, 847, 1995.

Gerlach, G. and Schill, R., Composition of orchids scents attracting euglossine bees, *Bot. Acta* 104, 379, 1991.

Omata, A., Yomogida, K., Nakamura, S., Ohta, T., Izawa, Y. and Watanabe, S., The scent of *Lotus* flowers, *J. Essent. Oil Res.* 3, 221, 1991.

Knudsen, J.T., Tollsten, L., Groth, I., Bergström, G., and Raguso, R.A., Trends in floral scent chemistry in pollination syndromes: Floral scent composition in hummingbird-pollinated taxa, *Bot. J. Linn. Soc.* 146, 191, 2004.

Knudsen, J.T. and Tollsten, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa, *Bot. J. Linn. Soc.* 113, 263, 1993.

Altenburger, R. and Matile, P., Circadian rhythmicity of fragrance emission in flowers of *Hoya carnosa* R. Br., *Planta* 174, 248, 1988.

Dudareva, N., Piechulla, B., and Pichersky, E., Biogenesis of floral scents, *Hort. Rev.* 24, 31, 2000.

Euler, M. and Baldwin, I.T., The chemistry of defense and apprenancy in the corollas of *Nicotiana attenuata*, *Oecologia* 107, 102, 1996.

Helsper, J.P.F., Davies, J.A., Bouwmeester, H.J., Krol, A.F., and van Kampen, M.H., Circadian rhythmicity in emission of volatile compounds by the flowers of *Rosa hybrida* L. cv. Honesty, *Planta* 207, 88, 1998.

Hills, H.G. and Williams, N.H., Fragrance cycle of *Clowesia rosea*, *Orquídea (Méx.)* 12, 19, 1990.

Kuanprasert, N., Kuehnle, A.R., and Tang, C.S., Floral fragrance compounds of *Anthurium* (Araceae) species and hybrids, *Phytochemistry* 49, 521, 1998.

Loper, G.M. and Lapioli, A.M., Photoperiodic effects on the emanation of volatiles from alfalfa (*Medicago sativa* L.) florets, *Plant Physiol.* 49, 729, 1971.

MacTavish, H.S., Davies, N.W., and Menary, R.C., Emission of volatiles from brown *Boronia* flowers: some comparative observations. *Ann. Bot.* 86, 347, 2000.

Pott, M.B., Pichersky, E., and Piechulla, B., Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of *Stephanotis floribunda*, *J. Plant Physiol.* 159, 925, 2002.

Awano, K., Honda, T., Ogawa, T., Suzuki, S., and Matsunaga, Y., Volatile components of *Phalaenopsis schilleriana* Rehb., *Flav. Fragr. J.* 12, 341, 1997.

Lewis, J.A., Moore, C.J., Fletcher, M.T., Drew, R.A., and Kitching, W., Volatile compounds from flowers of *Spathiphyllum cannaefolium*, *Phytochemistry* 27, 2755, 1988.

Matsumoto, F., Idetsuki, H., Harada, K., Nohara, I., and Toyoda, T., Volatile components of *Hedychium coronarium* Koenig flowers, *J. Essent. Oil Res.* 5, 123, 1993.

Patt, J.M., French, J.C., Schal, C., Lech, J., and Hartman, T.G., The pollination biology of tuckahoe, *Peltandra virginica* (Araceae), *Am. J. Bot.* 82, 1230, 1995.

Pham-Deleuge, M.H., Etievant, P., Guichard, E., and Masson, C., Sunflower volatiles involved in honeybee discrimination among genotypes and flowering stages, *J. Chem. Ecol.* 15, 329, 1989.

Sazima, M., Vogel, S., Cocucci, A., and Hauser, G., The perfume flowers of *Cyphomandra* (Solanaceae): pollination by euglossine bees, bellows mechanism, osmophores, and volatiles, *Plant Syst. Evol.* 187, 51, 1993.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Erdmann, D., and Francke, W., Variation of floral scent emission and postpollination changes in individual flowers of *Ophrys sphegodes* subsp. *sphegodes*, *J. Chem. Ecol.* 23, 2881, 1997.

Stránský, K. and Valterová, I., Release of volatiles during the flowering period of *Hydrosme riviera*, *Phytochemistry* 52, 1387, 1999.

Tollsten, L., A multivariate approach to post-pollination changes in the floral scent of *Platanthera bifolia* (Orchidaceae), *Nord. J. Bot.* 13, 495, 1993.

Vogel, S., *The Role of Scent Glands in Pollination*, Amerind Publishing, New Delhi, 1990.

Bergström, G., Dobson, H.E.M., and Groth, I., Spatial fragrance patterns within the flowers of *Ranunculus acris* (Ranunculaceae), *Plant Syst. Evol.* 195, 221, 1995.

Dobson, H.E.M., Groth, I., and Bergström, G., Pollen advertisement: chemical contrasts between whole-flower and pollen odors, *Am. J. Bot.* 83, 877, 1996.

Dobson, H.E.M. and Bergström, G., The ecology and evolution of pollen odors, *Plant Syst. Evol.* 222, 63, 2000.

Ecroyd, C.E., Franich, R.A., Kroese, H.W., and Steward, D., Volatile constituents of *Dactylanthus taylorii* flower nectar in relation to flower pollination and browsing by animals, *Phytochemistry* 40, 1387, 1995.

Flamini, G., Cioni, P.L., and Morelli, I., Differences in the fragrances of pollen and different floral parts of male and female flowers of *Laurus nobilis*, *J. Agric. Food Chem.* 50, 4647, 2002.

Knudsen, J.T. and Tollsten, L., Floral scent and intrafloral scent differentiation in *Moneses* and *Pyrola* (Pyrolaceae), *Plant Syst. Evol.* 177, 81, 1991.

Raguso, R.A., Why are some floral nectars scented?, *Ecology* 85, 1486, 2004.

Ayasse, M., Schiestl F.P., Paulus, H.F., Lofstedt, C., Hansson, B., Ibarra, F., and Francke, W., Evolution of reproductive strategies in the sexually deceptive orchid *Ophrys sphegodes*: how does flower-specific variation of odor signals influence reproductive success?, *Evolution* 54, 1995, 2000.

Moya, S. and Ackerman, J.D., Variation in the floral fragrance of *Epidendrum ciliare* (Orchidaceae), *Nord. J. Bot.* 13, 41, 1993.

Bohlmann, J., Martin, D., Oldham, N.J., and Gershenzon, J., Terpenoid secondary metabolism in *Arabidopsis thaliana*: cDNA cloning, characterization, and functional expression of a myrcene/(E)- β -ocimene synthase, *Arch. Biochem. Biophys.* 375, 261, 2000.

Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from *Arabidopsis* flowers, *Plant J.* 42, 757, 2005.

Schlumpberger, B.O., Dehydrogeosmin produzierende Kakteen: Untersuchungen zur Verbreitung, Duftstoff-Produktion und Bestäubung, *dissertation*, Universität Tübingen, Verlag Grauer, Stuttgart, 2002.

Azuma, H., Thien, L.B., and Kawano, S., Molecular phylogeny of *Magnolia* (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents, *J. Plant Res.*, 112, 291, 1999.

Barkman, T.J., Character coding of secondary chemical variation for use in phylogenetic analyses, *Biochem. Syst. Ecol.* 29, 1, 2001.

Levin, R.A., McDade, L.A., and Raguso, R.A., The systematic utility of floral and vegetative fragrance in two genera of Nymphaeaceae, *Syst. Biol.* 52, 334, 2003.

Williams, W.M. and Whitten, N.H., Molecular phylogeny and floral fragrances of male euglossine bee-pollinated orchids: a study of *Stanhopea*, *Plant Species Biol.* 14, 143, 1999.

Lozada, T.M., Borchsenius, F., Knudsen, J.T., and Frydenberg, J., Reproductive isolation of sympatric forms of the neotropical understory palm *Geonoma macrostachys* var. *macrostachys* in western Amazonia, *Plant Syst. Evol.* submitted.

Dobson, H.E.M., Floral volatiles in insect biology, in *Insect-Plant Interactions*, Bernays, E.A., Ed., CRC Press, Boca Raton, FL, 1994, p. 47.

Robacker, D.C., Meeuse, B.J.D., and Erickson, E.H., Floral aroma: how far will plants go to attract pollinators?, *BioScience* 38, 390, 1988.

Metcalf, R.L., Plant volatiles as insects attractants, *CRC Crit. Rev. Plant Sci.* 45, 251, 1987.

Williams, N.H., Floral fragrances as cues in animal behavior, in *Handbook of Experimental Pollination Biology*, Jones, C.E. and Little, R.J., Eds., Van Nostrand Reinhold, New York, 1983, p. 50.

Pichersky, E. and Gershenson, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, *Curr. Opin. Plant Biol.* 5, 237, 2002.

Andersson, S., Nilsson, L.A., Groth, I., and Bergström, G., Floral scents in butterfly-pollinated plants: possible convergence in chemical composition, *Bot. J. Linn. Soc.* 140, 129, 2002.

Raguso, R.A., Olfactory landscapes and deceptive pollination: signal, noise and convergent evolution in floral scent, in *Insect Pheromone Biochemistry and Molecular Biology*, Blomquist, G.J. and Vogt, R., Eds., Academic Press, New York, 2003, p. 631.

Dufay, M., Hossaert-McKey, M., and Anstett, M.C., When leaves act like flowers: how dwarf palms attract their pollinators, *Ecol. Lett.* 6, 28, 2003.

Willmer, P.G. and Stone, G.N., How aggressive ant-guards assist seed-set in *Acacia* flowers, *Nature* 388, 165, 1997.

El-Sayed, A.M., The Pherobase: database of insect pheromones and semiochemicals, available at <http://www.pherobase.com>, 2004.

Angioy, A.-M., Stensmyr, M.C., Urru, I., Puliafito, M., Collu, I., and Hansson, B.S., Function of the heater: the dead horse arum revisited, *Biol. Lett. Suppl.* 271(pt. 3), S13, 2004.

Seymour, R.S. and Schultze-Motel, P., Heat-producing flowers, *Endeavour* 21, 125, 1997.

Seymour, R.S., White, C.R., and Gibernau, M., Heat reward for insect pollinators, *Nature* 426, 243, 2003.

Seymour, R.S., Gibernau, M., and Ito, K., Thermogenesis and respiration of inflorescences of the dead horse arum *Helicodiceros muscivorus*, a pseudo-thermoregulatory aroid associated with fly pollination, *Funct. Ecol.* 17, 886, 2003.

Stensmyr, M.C., Urru, I., Collu, I., Celander, M., Hansson, B.S., and Angioy, A.M., Rotting smell of dead-horse arum florets, *Nature* 420, 625, 2002.

Schiestl, F.P. and Ayasse, M., Do changes in floral odor cause speciation in sexually deceptive orchids?, *Plant Syst. Evol.* 234, 111, 2002.

Schiestl, F., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B., Ibarra, F., and Francke, W., Orchid pollination by sexual swindle, *Nature* 399, 421, 1999.

Ayasse, M., Schiestl, F., Paulus, H.F., Erdmann, D., and Francke, W., Chemical communication in the reproductive biology of *Ophrys sphegodes*, *Mitt. Dtsch. Ges. Allg. Angew. Ent.* 11, 473, 1997.

Ayasse, M., Schiestl, F., Paulus, H.F., Ibarra, F., and Francke, W., Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals, *Proc. R. Soc. Lond. B.* 270, 517, 2003.

Eltz, T., Whitten, W.M., Roubik, D.W., and Linsenmair, K.E., Fragrance collection, storage, and accumulation by individual male orchid bees, *J. Chem. Ecol.* 25, 157, 1999.

Eltz, T., Roubik, D.W., and Whitten, W.M., Fragrances, male display and mating behaviour of *Euglossa hemichlora*: a flight cage experiment, *Physiol. Entomol.* 28, 251, 2003.

Ervik, F. and Knudsen, J.T., Scarabs and water lilies: faithful partners for the past 100 million years?, *Linn. J. Biol.* 80, 539, 2003.

Gottsberger, G., Flowers and beetles in the South American tropics, *Bot. Acta* 103, 360, 1990.

Gottsberger, G. and Silberbauer-Gottsberger, I., Olfactory and visual attraction of *Erioscelis emarginata* (Cyclocephalini, Dynastinae) to the inflorescences of *Philodendron selloum* (Araceae), *Biotropica* 23, 23, 1991.

Prance, G.T. and Arias, J.R., A study of the floral biology of *Victoria amazonica* (Poepp.) Sowerby (Nymphaeaceae), *Acta Amazon.* 5, 109, 1975.

Schatz, G.E., Some aspects of pollination biology in Central American forests, in *Reproductive Ecology of Tropical Plants*, Bawa, K.S. and Hadley, M., Eds., Parthenon, New York, 1990, p. 69.

Sakai, S., A review of brood-site pollination mutualisms: plants providing breeding sites for their pollinators, *J. Plant Res.* 115, 161, 2002.

Anstett, M.C., An experimental study of the interaction between the dwarf palm (*Chamaerops humilis*) and its floral visitor *Dereolomus chamaeropsis* throughout the life cycle of the weevil, *Acta Oecol.* 20, 551, 1999.

Bernal, R. and Ervik, F., Floral biology and pollination of the dioecious palm *Phytelephas seemannii* in Colombia: an adaptation to Staphylinid beetles, *Biotropica* 28, 682, 1996.

Eriksson, R., The remarkable weevil pollination of the neotropical Carludovicoideae (Cyclanthaceae). *Plant Syst. Evol.* 189, 75, 1994.

Gottsberger, G., Pollination and evolution in neotropical Annonaceae, *Plant Species Biol.* 14, 143, 1999.

Miyake, T. and Yafuso, M., Floral scents affect reproductive success in fly-pollinated *Alocasia odora* (Araceae), *Am. J. Bot.* 90, 370, 2003.

Terry, I., Moore, C.J., Walter, G.H., Forster, P.I., Roemer, R.B., Donaldson, J., and Machin, P., Association of cone thermogenesis and volatiles with pollinator specificity in *Macrozamia* cycads. *Plant Syst. Evol.* 243, 233, 2004.

Grison-Pigé, L., Bessière, J.-M., and Hossaert-McKey, M., Specific attraction of figpollinating wasps: role of volatile compounds released by tropical figs. *J. Chem. Ecol.* 28:283–295, 2002.

Knudsen, J.T., Tollsten, L., and Bergström, G., A review: Floral scents — a check list of volatile compounds isolated by head-space techniques. *Phytochemistry* 33, 253, 1993.

Webster, F.X., Millar, J.G., and Kiemle, D.J., Mass spectrometry, in *Methods in Chemical Ecology*, vol. 1, *Chemical Methods*, Millar, J.G. and Haynes, K.F., Eds., Kluwer Academic, Norwell, MA, 1998, p. 127.

Heath, R.R., and Dueben, B.D., Analytical and preparative gas chromatography, in *Methods in Chemical Ecology*, vol. 1, *Chemical Methods*, Millar, J.G. and Haynes, K.F., Eds., Kluwer Academic, Norwell, MA, 1998, p. 85.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F., and Francke, W., Sex pheromone mimicry in the early spider orchid (*Ophrys sphegodes*): patterns of hydrocarbons as the mechanism for pollination by sexual deception, *J. Comp. Physiol. A* 186, 567, 2000.

Schiestl, F.P. and Ayasse, M., Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximizing reproductive success, *Oecologia* 126, 531, 2001.

Dudareva, N., Pichersky, E., and Gershenzon, J., Biochemistry of plant volatiles, *Plant Physiol.* 135, 1893, 2004.

Qureshi, N. and Porter, J.W., Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate, in *Biosynthesis of Isoprenoid Compounds*, Porter, J.W. and Spurgeon, S.L., Eds., John Wiley & Sons, New York, 1981, p. 47.

Newman, J.D. and Chappell, J., Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway, *Crit. Rev. Biochem. Mol. Biol.* 34, 95, 1999.

Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., and Bacher, A., The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms, *Chem. Biol.* 5(9), R221, 1998.

Lichtenthaler, H.K., The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 50, 47, 1999.

Rohmer, M., The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants, *Nat. Prod. Rep.* 16, 565, 1999.

Rodriguez-Concepcion, M., and Boronat, A., Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics, *Plant Physiol.* 130, 1079, 2002.

Piel, J., Donath, J., Bandemer, K., and Boland, W., Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles, *Angew. Chem. Int. Ed.* 37, 2478, 1998.

Adam, K.P., Thiel, R., and Zapp, J., Incorporation of 1-[1-C-13]deoxy-D-xylulose in chamomile sesquiterpenes, *Arch. Biochem. Biophys.* 369, 127, 1999.

Jux, A., Gleixner, G., and Boland, W., Classification of terpenoids according to the methylerythritolphosphate or the mevalonate pathway with natural $^{12}\text{C}/^{13}\text{C}$ isotope ratios: dynamic allocation of resources in induced plants, *Angew. Chem. Int. Ed.* 40, 2091, 2001.

Hemmerlin, A., Hoeffler, J.-F., Meyer, O., Tritsch, D., Kagan, I.A., Grosdemange-Billiard, C., Rohmer, M., and Bach, T.J., Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells, *J. Biol. Chem.* 278, 26666, 2003.

Schuh, C.A., Radykewicz, T., Sagner, S., Latzel, C., Zenk, M.H., Arigoni, D., Bacher, A., Rohdich, F., and Eisenreich, W., Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy, *Phytochem. Rev.* 2, 3, 2003.

Laule, O., Fürholz, A., Chang, H.-S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W., and Lange, M., Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in *Arabidopsis thaliana*, *Proc. Natl. Acad. Sci. USA* 100, 6866, 2003.

Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., and Gershenzon, J., The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers, *Proc. Natl. Acad. Sci. USA* 102, 933, 2005.

Bick, J.A. and Lange, B.M., Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane, *Arch. Biochem. Biophys.* 415, 146, 2003.

Poulter, C.D. and Rilling, H.C., Prenyl transferases and isomerase, in *Biosynthesis of Isoprenoid Compounds*, Porter, J.W. and Spurgeon, S.L., Eds., John Wiley & Sons, New York, 1981, p. 161.

Ogura, K. and Koyama, T., Enzymatic aspects of isoprenoid chain elongation, *Chem. Rev.* 98, 1263, 1998.

McGarvey, D.J. and Croteau, R., Terpenoid metabolism, *Plant Cell* 7, 1015, 1995.

Wang, K. and Ohnuma, S., Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution, *Trends Biochem. Sci.* 24, 445, 1999.

Gershenzon, J. and Kreis, W., Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins, in *Biochemistry of Plant Secondary Metabolism*, Wink, M., Ed., CRC Press, Boca Raton, FL, 1999, p. 222.

Burke, C.C., Wildung, M.R., and Croteau, R., Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer, *Proc. Natl. Acad. Sci. USA* 96, 13062, 1999.

Tholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E., and Dudareva, N., Formation of monoterpenes in *Antirrhinum majus* and *Clarkia breweri* flowers involves heterodimeric geranyl diphosphate synthases, *Plant Cell* 16, 977, 2004.

Chen, A., Kroon, P.A., and Poulter, C.D., Isoprenyl diphosphate synthases: protein-sequence comparisons, a phylogenetic tree, and predictions of secondary structure, *Protein Sci.* 3, 600, 1994.

Bouvier, F., Suire, C., D'Harlingue, A., Backhaus, R.A., and Camara, B., Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells, *Plant J.* 24, 241, 2000.

Burke, C. and Croteau, R., Geranyl diphosphate synthase from *Abies grandis*: cDNA isolation, functional expression, and characterization, *Arch. Biochem. Biophys.* 405, 130, 2002.

Cane, D.E., Sesquiterpene biosynthesis: cyclization mechanisms, in *Comprehensive Natural Products Chemistry*, vol. 2, *Isoprenoids Including Carotenoids and Steroids*, Cane, D.E., Ed., Pergamon Press, Oxford, 1999, p. 155.

Wise, M.L. and Croteau, R., Monoterpene biosynthesis, in *Comprehensive Natural Products Chemistry*, vol. 2, *Isoprenoids Including Carotenoids and Steroids*, Cane, D.E., Ed., Pergamon Press, Oxford, 1999, p. 97.

Kaiser, R., New volatile constituents of *Jasminum sambac* (L.) Aiton, in *Flavors and Fragrances: A World Perspective, Proceedings of the 10th International Congress of Essential Oils* (Washington, DC, 1986), Lawrence, B.M., Mookherjee, B.D., and Willis, B.J., Eds., Elsevier Science, Amsterdam, 1988, p. 669.

Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A., and Hildebrand, D.F., Volatiles from flowers of *Nicotiana sylvestris*, *N. otophora* and *Malus x domestica*: headspace components and day/night changes in their relative concentrations, *Phytochemistry* 29, 2473, 1990.

Lupien, S., Karp, F., Wildung, M., and Croteau, R., Regiospecific cytochrome P450 limonene hydroxylases from mint (*Mentha*) species: cDNA isolation, characterization, and functional expression of (–)-4S-limonene-3-hydroxylase and (–)-4S-limonene-6-hydroxylase, *Arch. Biochem. Biophys.* 368, 181, 1999.

Bouwmeester, H.J., Konings, M.C.J.M., Gershenzon, J., Karp, F., and Croteau, R., Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (*Carum carvi*), *Phytochemistry* 50, 243, 1999.

Ralston, L., Kwon, S.T., Schoenbeck, M., Ralston, J., Schenk, D.J., Coates, R.M., and Chappell, J., Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (*Nicotiana tabacum*), *Arch. Biochem. Biophys.* 393, 222, 2001.

Bouwmeester, H.J., Gershenzon, J., Konings, M.C.J.M., and Croteau, R., Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development, *Plant Physiol.* 117, 901, 1998.

Hallahan, D.L., West, J.M., Wallsgrove, R.M., Smiley, D.W.M., Dawson, G.W., Pickett, J.A., and Hamilton, J.G.C., Purification and characterization of an acyclic monoterpene primary alcohol:NADP⁺ oxidoreductase from catmint (*Nepeta racemosa*), *Arch. Biochem. Biophys.* 318, 105, 1995.

Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E., Volatile ester formation in roses. Identification of an acetyl-coenzyme A geraniol/citronellol acetyltransferase in developing rose petals, *Plant Physiol.* 131, 1868, 2003.

Bauer, K., Garbe, D., and Surburg, H., *Common Fragrance and Flavor Materials*, Wiley-VCH Verlagsgesellschaft mbH, Weinheim, Germany, 2001, p. 44.

Cooper, C., Davies, N.W., and Menary, R.C., C-27 apocarotenoids in the flowers of *Boronia megastigma* (Nees), *J. Agric. Food Chem.* 51, 2384, 2003.

Simkin, A.J., Schwartz, S.H., Auldrige, M., Taylor, M.G., and Klee, H.J., The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone, *Plant J.* 40, 882, 2004.

Baldwin, E.A., Scott, J.W., Shewmaker, C.K., and Schuch, W., Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components, *HortScience* 35, 1013, 2000.

Simkin, A.J., Underwood, B.A., Auldrige, M., Loucas, H.M., Shibuya, K., Schmelz, E.A., Clark, D.G., and Klee, H.J., Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers, *Plant Physiol.* 136, 3504, 2004.

Feussner, I. and Wasternack, C., Lipoxygenase catalyzed oxygenation of lipids, *Fett/Lipid* 100(4–5), 146, 1998.

Knudsen, J.T., Tollsten, L., and Bergstrom, G., Floral scents: a checklist of volatile compounds, isolated by head-space techniques, *Phytochemistry* 33, 253, 1993.

D'Auria, J.C., Chen, F., and Pichersky, E., Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of *Clarkia breweri*, *Plant Physiol.* 130, 466, 2002.

Feussner, I. and Wasternack, C., The lipoxygenase pathway, *Annu. Rev. Plant Biol.* 53, 275, 2002.

Gang, D.R., Wang, J.H., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E., An investigation of the storage and biosynthesis of phenylpropenes in sweet basil, *Plant Physiol.* 125, 539, 2001.

Boatright, J., Negre, F., Chen, X., Kish, C.M., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D., and Dudareva, N., Understanding in vivo benzenoid metabolism in petunia petal tissue, *Plant Physiol.* 135, 1993, 2004.

Watanabe, S., Hayashi, K., Yagi, K., Asai, T., MacTavish, H., Picone, J., Turnbull, C., and Watanabe, N., Biogenesis of 2-phenylethanol in rose flowers: incorporation of [²H₈]L-phenylalanine into 2-phenylethanol and its beta-D-glucopyranoside during the flower opening of *Rosa* "Hoh-Jun" and *Rosa damascena* Mill, *Biosci. Biotechnol. Biochem.* 66, 943, 2002.

Wang, J., Dudareva, N., Bhakta, S., Raguso, R.A., and Pichersky, E., Floral scent production in *Clarkia breweri* (Onagraceae). II. Localization and developmental modulation of the enzyme S-adenosyl-L-methionine:(iso)eugenol O-methyltransferase and phenylpropanoid emission, *Plant Physiol.* 114, 213, 1997.

Lewinsohn, E., Ziv-Raz, I.I., Dudai, N., Tadmor, Y., Lastochkin, E., Larkov, O., Chaimovitsh, D., Ravid, U., Putievsky, E., Pichersky, E., and Shoham, Y., Biosynthesis of estragole and methyl-eugenol in sweet basil (*Ocimum basilicum* L.). Developmental and chemotypic association of allylphenyl *O*-methyltransferase activities, *Plant Sci.* 160, 27, 2000.

Gang, D.R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Noel, J.P., and Pichersky, E., Characterization of phenylpropene *O*-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant OMT family, *Plant Cell* 14, 505, 2002.

Lavid, N., Wang, J., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E., *O*-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals, *Plant Physiol.* 129, 1899, 2002.

Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Durmas, C., Bendahmane, M., Cock, J.M., and Hugueney, P., Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose *O*-methyltransferases, *FEBS Lett* 523, 113, 2002.

Wu, S.Q., Watanabe, N., Mita, S., Dohra, H., Ueda, Y., Shibuya, M., Ebizuka, Y., The key role of phloroglucinol *O*-methyltransferase in the biosynthesis of *Rosa chinensis* volatile 1,3,5-trimethoxybenzene, *Plant Physiol.* 135, 95, 2004.

Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C., and Wood, K., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, *Plant Cell* 12, 949, 2000.

Murfitt, L.M., Kolosova, N., Mann, C.J., and Dudareva, N., Purification and characterization of S-adenosyl-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of *Antirrhinum majus*, *Arch. Biochem. Biophys.* 382, 145, 2000.

Effmert, U., Saschenbrecker, S., Ross, J., Negre, F., Fraser, C.M., Noel, J.P., Dudareva, N., and Piechulla, B., Floral benzenoid carboxyl methyltransferases: from *in vitro* to *in planta* function, *Phytochemistry* 66, 1211, 2005.

Dudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A., and Pichersky, E., Acetyl-CoA:benzyl alcohol acetyltransferase—an enzyme involved in floral scent production in *Clarkia breweri*, *Plant J.* 14, 297, 1998.

Aharoni, A., Keizer, L.C.P., Bouwmeester, H.J., Sun, Z., Alvarez-Huerta, M., Verhoeven, H.A., Blaas, J., van Houwelingen, A.M.M.L., De Vos, R.C.H., van der Voet, H., Jansen, R.C., Guis, M., Mol, J., Davis, R.W., Schena, M., van Tunen, A.J., and O'Connell, A.P., Identification of the *SAAT* gene involved in strawberry flavor biogenesis by use of DNA microarrays, *Plant Cell* 12, 647, 2000.

Beekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F.W., Bouwmeester, H.J., and Aharoni, A., Functional characterization of enzymes forming volatile esters from strawberry and banana, *Plant Physiol.* 135, 1865, 2004.

Raguso, R.A., Levin, R.A., Foose, S.E., Holmberg, M.W., and McDade, L.A., Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in *Nicotiana*, *Phytochemistry* 63, 265, 2003.

Pichersky, E., Lewinsohn, E., and Croteau, R., Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in *Clarkia breweri*, *Arch. Biochem. Biophys.* 316, 803, 1995.

Dudareva, N., Cseke, L., Blanc, V.M., and Pichersky, E., Evolution of floral scent in *Clarkia*: novel patterns of S-linalool synthase gene expression in the *C. breweri* flower, *Plant Cell* 8, 1137, 1996.

Ross, J.R., Nam, K.H., D'Auria, J.C., and Pichersky, E., S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases, *Arch. Biochem. Biophys.* 367, 9, 1999.

Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., Faldt, J., Miller, B., and Bohlmann, J., (E)- β -Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new TPS-subfamily, *Plant Cell* 15, 1227, 2003.

Guterman, I., Shalita, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D., Rose scent: genomics approach to discovering novel floral fragrance-related genes, *Plant Cell* 14, 2325, 2002.

Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J., Biosynthesis and emission of terpenoid volatiles from *Arabidopsis* flowers, *Plant Cell* 15, 481, 2003.

Pott, M.B., Pichersky, E., and Piechulla, B., Evening-specific oscillation of scent emission, SAMT enzyme activity, and mRNA in flowers of *Stephanotis floribunda*, *J. Plant Physiol.* 159, 925, 2002.

Negre, F., Kish, C.M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D.G., and Dudareva, N., Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers, *Plant Cell* 15, 2992, 2003.

Chen, F., D'Auria, J.C., Tholl, D., Ross, J.R., Gershenzon, J., Noel, J.P., and Pichersky, E., An *Arabidopsis thaliana* gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense, *Plant J.* 36, 577, 2003.

Pott, M., Hippauf, F., Saschenbrecker, S., Chen, F., Ross, J., Kiefer, I., Slusarenko, A., Noel, J.P., Pichersky, E., Effmert, U., and Piechulla B., Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in *Stephanotis floribunda* and *Nicotiana suaveolens*, *Plant Physiol.* 135, 1946, 2004.

Suzuki, H., Sawada, S., Watanabe, K., Nagae, S., Yamaguchi, M., Nakayama, T., and Nishino, T., Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (*Salvia splendens*) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases, *Plant J.* 38, 994, 2004.

Bouvier, F., Dogbo, O., and Camara, B., Biosynthesis of the food and cosmetic plant pigment bixin (annatto), *Science* 300, 2089, 2003.

Dobson, H.E.M., Floral volatiles in insect biology, in Bernays, E., Ed., *Insect-Plant Interactions*, vol. 5, CRC Press, Boca Raton, FL, 1994, p. 47.

Dudareva, N., Piechulla, B., and Pichersky, E., Biogenesis of floral scent, *Hort. Rev.* 24, 31, 1999.

Dobson, H.E.M., Bergstrom, G., and Groth, I., Differences in fragrance chemistry between flower parts of *Rosa rugosa* Thunb (Rosaceae), *Isr. J. Bot.* 39, 143, 1990.

Dobson, H.E.M., Groth, I., and Bergstrom, G., Pollen advertisement: chemical contrasts between whole-flower and pollen odors, *Am. J. Bot.* 83, 877, 1996.

Pichersky, E., Raguso, R.A., Lewinsohn, E., and Croteau, R., Floral scent production in *Clarkia* (Onagraceae). I. Localization and developmental modulation of monoterpane emission and linalool synthase activity, *Plant Physiol.* 106, 1533, 1994.

Mactavish, H.S. and Menary, R.C., Volatiles in different floral organs, and effect of floral characteristics on yield of extract from *Boronia megastigma* (Nees), *Ann. Bot.* 80, 305, 1997.

Verdonk, J.C., Ric de Vos, C.H., Verhoeven, H.A., Haring, M.A., van Tunen, A.J., and Schuurink, R.C., Regulation of floral scent production in petunia revealed by targeted metabolomics, *Phytochemistry* 62, 997, 2003.

Stern, W.L., Curry, K.J., and Pridgeon, A.M., Osmophores of *Stanhopea anfracta* (Orchidaceae), *Am. J. Bot.* 74, 1323, 1987.

Curry, K.J., Initiation of terpenoid synthesis in osmophores of *Stanhopea anfracta* (Orchidaceae): a cytochemical study, *Am. J. Bot.* 74, 1332, 1987.

Dudareva, N. and Pichersky, E., Biochemical and molecular genetic aspects of floral scent, *Plant Physiol.* 122, 627, 2000.

Kolosova, N., Sherman, D., Karlson, D., and Dudareva, N., Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers, *Plant Physiol.* 126, 956, 2001.

Goodwin, S.M., Kolosova, N., Kish, C.M., Wood, K.V., Dudareva, N., and Jenks, M.A., Cuticle characteristics and volatile emissions of petals in *Antirrhinum majus*, *Physiol. Plant.* 117, 435, 2003.

Verdonk, J.C., Haring, M.A., van Tunen, A.J., and Schuurink, R.C., *ODORANT1* regulates fragrance biosynthesis in petunia flowers, *Plant Cell* 17, 1612, 2005.

Matile, P. and Altenburger, R., Rhythms of fragrance emission in flowers, *Planta* 174, 242, 1988.

Loughrin, J.H., Hamilton-Kemp, T.R., Burton, H.R., Andersen, R.A., and Hilderbrand, D.F., Glycosidically bound volatile components of *Nicotiana sylvestris* and *N. suaveolens* flowers, *Phytochemistry* 31, 1537, 1992.

Loughrin, J.H., Potter, D.A., and Hamilton-Kemp, T.R., Circadian rhythm of volatile emission from flowers of *Nicotiana sylvestris* and *N. suaveolens*, *Plant Physiol.* 83, 492, 1991.

Nielsen, J.K., Jakobsen, H.B., Hansen, P.F.K., Moller, J., and Olsen, C.E., Asynchronous rhythms in the emission of volatiles from *Hesperis matronalis* flowers, *Phytochemistry* 38, 847, 1995.

Jakobsen, H.B. and Olsen, C.E., Influence of climatic factors on rhythmic emission of volatiles from *Trifolium repens* L. flowers in situ, *Planta* 192, 365, 1994.

Helsper, J.P.F.G., Davies, J.A., Bouwmeester, H.J., Krol, A.F., and van Kampen, M.H., Circadian rhythmicity in emission of volatile compounds by flowers of *Rosa hybrida* L. cv. Honesty, *Planta* 207, 88, 1998.

Kolosova, N., Gorenstein, N., Kish, C.M., and Dudareva, N., Regulation of circadian methylbenzoate emission in diurnally and nocturnally emitting plants, *Plant Cell* 13, 2333, 2001.

Pott, M.B., Effmert, U., and Piechulla, B., Transcriptional and post-translational regulation of S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT) during *Stephanotis floribunda* flower development, *J. Plant Physiol.* 160, 635, 2003.

Altenburger, R. and Matile, P., Circadian rhythmicity of fragrance emission in flowers of *Hoya carnosa* R. Br., *Planta* 174, 248, 1988.

Altenburger, R. and Matile, P., Further observations on rhythmic emission of fragrance in flowers, *Planta* 180, 194, 1990.

Jakobsen, H.B., Friis, P., Nielsen, J.K., and Olsen, C.E., Emission of volatiles from flowers and leaves of *Brassica napus* in situ, *Phytochemistry* 37, 695, 1994.

Arditti, J., Aspects of the physiology of orchids, in *Advances in Botanical Research*, vol. 7, Woolhouse, H.W., Ed., Academic Press, London, 1979, p. 422.

Tollsten, L. and Bergstrom, G., Headspace volatiles of whole plants and macerated plant parts of *Brassica* and *Sinapis*, *Phytochemistry* 27, 4013, 1989.

Tollsten, L., A multivariate approach to post-pollination changes in the floral scent of *Platanthera bifolia* (Orchidaceae), *Nord. J. Bot.* 13, 495, 1993.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Erdmann, D., and Francke, W., Variation of floral scent emission and post pollination changes in individual flowers of *Ophrys sphegodes* subsp. *sphegodes*, *J. Chem. Ecol.* 23, 2881, 1997.

Neiland, M.R.M. and Wilcock, C.C., Fruit set, nectar reward, and rarity in the Orchidaceae, *Am. J. Bot.* 85, 1657, 1998.

Lucker, J., Bouwmeester, H.J., Schwab, W., Blaas, J., van Der Plas, L.H., and Verhoeven, H.A., Expression of *Clarkia* S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranosid, *Plant J.* 27, 315, 2001.

Lucker, J., Schwab, W., van Hautum, B., Blaas, J., van der Plas, L.H., Bouwmeester, H.J., and Verhoeven, H.A., Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon, *Plant Physiol.* 134, 510, 2004.

Cseke, L., Dudareva, N., and Pichersky, E., Structure and evolution of linalool synthase, *Mol. Biol. Evol.* 15, 1491, 1998.

Tholl, D., Chen, F., Petri, J., Gershenson, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from *Arabidopsis* flowers, *Plant J.* 42, 757, 2005.

Raguso, R.A. and Pichersky, E., Floral volatiles from *Clarkia breweri* and *C. concinna* (Onagraceae): recent evolution of floral scent and moth pollination, *Plant Syst. Evol.* 194, 55, 1995.

Pichersky, E. and Gang, D.R., Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective, *Trends Plant Sci.* 5, 439, 2000.

Iijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D.R., Bar, E., Lewinsohn, E., and Pichersky, E., The biochemical and molecular basis for the divergent pattern in the biosynthesis of terpene and phenylpropenes in the peltate glands of three cultivars of sweet basil, *Plant Physiol.* 136, 3724, 2004.

Vainstein, A., Lewinsohn, E., Pichersky, E., and Weiss, D., Floral fragrance—new inroads into an old commodity, *Plant Physiol.* 127, 1383, 2001.

Zuker, A., Tzfira, T., Ben-Meir, H., Ovadis, M., Shklarman, E., Itzhaki, H., Forkmann, G., Martens, S., Neta-Sharir, I., Weiss, D., and Vainstein, A., Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene, *Mol Breed.* 9, 33, 2002.

Dudareva, N. and Pichersky, E., Biochemical and molecular genetic aspects of floral scents, *Plant Physiol.* 122, 627, 2000.

Pichersky, E. and Gershenson, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, *Curr. Opin. Plant Biol.* 5, 237, 2002.

Davis, E.M. and Croteau, R., Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes, *Top. Curr. Chem.* 209, 53, 2000.

Bohlmann, J., Meyer-Gauen, G., and Croteau, R., Plant terpenoid synthases: molecular biology and phylogenetic analysis, *Proc. Natl. Acad. Sci. USA* 95, 4126, 1998.

Aubourg, S., Lecharny, A., and Bohlmann, J., Genomic analysis of the terpenoid synthase (*AtTPS*) gene family of *Arabidopsis thaliana*, *Mol. Genet. Genomics* 267, 730, 2002.

Sun, T.-P. and Kamiya, Y., The *Arabidopsis* GA1 locus encodes the cyclase *ent*-kaurene synthetase A of gibberellin biosynthesis, *Plant Cell* 6, 1509, 1994.

Yamaguchi, S., Sun, T.-P., Kawaide, H., and Kamiya, Y., The GA2 locus of *Arabidopsis thaliana* encodes *ent*-kaurene synthase of gibberellin biosynthesis, *Plant Physiol.* 116, 1271, 1998.

Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J., Biosynthesis and emission of terpenoid volatiles from *Arabidopsis* flowers, *Plant Cell* 15, 481, 2003.

Donath, J. and Boland, W., Biosynthesis of acyclic homoterpenes: enzyme selectivity and absolute configuration of the nerolidol precursor, *Phytochemistry* 39, 785, 1995.

Schueller, S.K., Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, *Nicotiana glauca* (Solanaceae), *Am. J. Bot.* 91, 672, 2004.

Bohlmann, J., Martin, D., Oldham, N.J., and Gershenzon, J., Terpenoid secondary metabolism in *Arabidopsis thaliana*: cDNA cloning, characterization, and functional expression of a myrcene/(E)- β -ocimene synthase, *Arch. Biochem. Biophys.* 375, 262, 2000.

Fäldt, J., Arimura, G., Gershenzon, J., Takabayashi, J., and Bohlmann, J., Functional identification of *AtTPS03* as (E)-beta-ocimene synthase: a new monoterpene synthase catalyzing jasmonate-and wound-induced volatile formation in *Arabidopsis thaliana*, *Planta* 216, 745, 2003.

Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from *Arabidopsis* flowers, *Plant J.* 42, 757, 2005.

Wise, and Croteau. Monoterpene biosynthesis, in *Comprehensive Natural Products Chemistry: Isoprenoids*, Cane, D.E., Ed., Elsevier, Amsterdam, 1999, p. 97.

Cane, D.E., Sesquiterpene biosynthesis: cyclization mechanisms, in *Comprehensive Natural Products Chemistry: Isoprenoids*, Cane, D.E., Ed., Elsevier, Amsterdam, 1999, p. 155.

Bechtold, N., Ellis, J., and Pelletier, G., *In planta* Agrobacterium mediated gene-transfer by infiltration of adult *Arabidopsis thaliana* plants, *C. R. Acad. Sci. Paris Life Sci.* 316, 1194, 1993.

Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W., Gus fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, *EMBO J.* 6, 3901, 1987.

Wang, J., Dudareva, N., Bhakta, S., Raguso, R.A., and Pichersky E., Floral scent production in *Clarkia breweri* (Onagraceae) II. Localization and developmental modulation of the enzyme S-adenosyl-L-methionine:(iso)eugenol O-methyltransferase and phenylpropanoid emission, *Plant Physiol.* 114, 213, 1997.

Dudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A., and Pichersky, E., Acetyl-CoA:benzylalcohol acetyltransferase: an enzyme involved in floral scent production in *Clarkia breweri*, *Plant J.* 14, 297, 1998.

Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C., and Wood, K., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, *Plant Cell* 12, 949, 2000.

Deans, S.G. and Waterman, P.G., Biological activity of volatile oils, in *Volatile Oil Crops: Their Biology, Biochemistry and Production*, Hay, R.K.M. and Waterman, P.G., Eds., Longman Scientific, Essex, 1993, p. 97.

Dudareva, N., Cseke, L., Blanc, V.M., and Pichersky, E., Evolution of floral scent in *Clarkia*: novel patterns of S-linalool synthase gene expression in the *C. breweri* flower, *Plant Cell* 8, 1137, 1996.

Loreto, F. and Velikova, V., Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes, *Plant Physiol.* 127, 1781, 2001.

Davis, A.R., Pylatuk, J.D., Paradis, J.C., and Low, N.H., Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae, *Planta* 205, 305, 1998.

Knudsen, J.T., Tollsten, L., and Bergström, G., Floral scents: a checklist of volatile compounds isolated by head-space techniques, *Phytochemistry* 33, 253, 1993.

Jones, M.E., Population genetics of *Arabidopsis thaliana*. 1. Breeding system, *Heredity* 27, 39, 1971.

Snape, J.W. and Lawrence, M.J., Breeding system of *Arabidopsis thaliana*, *Heredity* 27, 299, 1971.

Loridon, K., Cournoyer, B., Goubely, C., Depeiges, A., and Picard, G., Length polymorphism and allele structure of trinucleotide microsatellites in natural accessions of *Arabidopsis thaliana*, *Theor. Appl. Genet.* 97, 591, 1998.

Abbott, R.J. and Gomes, M.F., Population genetic structure and outcrossing rate of *Arabidopsis thaliana* (L) Heynh., *Heredity* 62, 411, 1989.

Agren, J. and Schemske, D.W., Outcrossing rate and inbreeding depression in 2 annual monoecious herbs, *Begonia hirsuta* and *B. semiovata*, *Evolution* 47, 125, 1993.

Hoffmann, M.H., Bremer, M., Schneider, K., Burger, F., Stolle, E., Moritz, G., Flower visitors in a natural population of *Arabidopsis thaliana*, *Plant Biol.* 5, 491, 2003.

Zuker, A., Tzfira, T., and Vainstein, A., Cut-flower improvement using genetic engineering, *Biotech. Adv.* 16, 33, 1998.

Zuker, A., Tzfira, T., Ben-Meir, H., Ovadis, M., Shklarman, E., Itzhaki, H., Forkmann, G., Martens, S., Neta-Sharir, I., Weiss, D., and Vainstein, A., Suppression of anthocyanin synthesis by antisense *fht* enhances flower fragrance, *Mol. Breed.* 9, 33, 2002.

Ben-Meir, H., Zuker, A., Weiss, D., and Vainstein, A., Molecular control of floral pigmentation: anthocyanins, in *Breeding for Ornamentals: Classical and Molecular Approaches*, Vainstein, A., Ed., Kluwer Academic Press, Dordrecht, The Netherlands, 2002, p. 253.

Croteau, R. and Karp, F., Origin of natural odorants, in *Perfume: Art, Science and Technology*, Muller, P. and Lamparsky, D., Eds., Elsevier Applied Sciences, New York, 1991, p. 101.

Dudareva, N. and Pichersky, E., Biochemical and molecular genetic aspects of floral scents, *Plant Physiol.* 122, 627, 2000.

Pichersky, E., Raguso, R.A., Lewinsohn, E., and Croteau, R., Floral scent production in *Clarkia* (Onagraceae). I. Localization and developmental modulation of monoterpane emission and linalool synthase activity, *Plant Physiol.* 106, 1533, 1994.

Weiss, E.A., *Essential Oil Crops*, CAB International, Wallingford, Oxon, UK, 1997.

Gudin, S., Rose: genetics and breeding, *Plant Breed.* 17, 159, 1997.

Barletta, A., Scent makes a comeback, *Floraculture* 5, 23, 1995.

Ohloff, G. and Demole, E., Importance of the odoriferous principle of Bulgarian rose oil in flavor and fragrance chemistry, *J. Chromatogr.* 406, 181, 1987.

Mookherjee, B.D., Trenkle, R.W., and Wilson, R.A., Live vs. dead. Part II. A comparative analysis of the headspace volatiles of some important fragrance and flavor raw materials. *J. Essent. Oil Res.* 2, 85, 1989.

Dobson, H.E.M., Danielson, E.M., and van Wesep, I.D., Pollen odor chemicals as modulators of bumble bee foraging on *Rosa rugosa* Thunb. (Rosaceae). *Plant Spec. Biol.* 14, 153, 1999.

Flament, I., Debonneville, C., and Furrer, A., Volatile constituents of roses: characterization of cultivars based on the headspace analysis of living flower emissions, in *Bioactive Volatile Compounds from Plants*, Teranishi, R., Butterly, R.G., and Sugisawa, H., Eds., American Chemical Society, Washington, DC, 1993, p. 269.

Helsper, J.P.F., Davies, J.A., Bouwmeester, H.J., Krol, A.F., and van Kampen, M.H., Circadian rhythmicity in emission of volatile compounds by flowers of *Rosa hybrida* L. cv. Honesty, *Planta* 207, 88, 1998.

Oka, N., Ohishi, H., Hatano, T., Hornberger, M., Sakata, K., and Watanabe, N., Aroma evolution during flower opening in *Rosa damascena* Mill., *Z. Naturforsch Sect. C Biosci.* 54, 889, 1999.

Kim, H.J., Kim, K., Kim, N.S., and Lee, D.S., Determination of floral fragrances of *Rosa hybrida* using solid-phase trapping-solvent extraction and gas chromatographymass spectrometry, *J. Chromatogr.* 902, 389, 2000.

Shalit, M. et al., Volatile compounds emitted by rose cultivars: fragrance perception by man and honey bees, *Isr. J. Plant Sci.* 52, 245, 2004.

Ohloff, G., Recent developments in the field of naturally-occurring aroma components, *Fortschr. Chem. Org. Naturst.* 35, 431, 1978.

Vainstein, A., Lewinsohn, E., Pichersky, E., and Weiss, D., Floral fragrance—new inroads into an old commodity, *Plant Physiol.* 127, 1383, 2001.

Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N., and Willmitzer, L., Metabolite profiling for plant functional genomics, *Nat. Biotech.* 18, 157, 2000.

Aharoni, A., Keizer, L.C.P., Bouwmeester, H.J., Sun, Z., Alvarez-Huerta, M., Verhoeven, H.A., Blaas, J., van Houwelingen, A.M.M.L., De Vos, R.C.H., van der Voet, H., Jansen, R.C., Guis, M., Mol, J., Davis, R.W., Schena, M., van Tunen, A.J., and O'Connell, A.P., Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays, *Plant Cell* 12, 647, 2000.

Lange, B.M., Wildung, M.R., Stauber, E.J., Sanchez, C., Pouchnik, D., and Croteau, R., Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes, *Proc. Natl. Acad. Sci. USA* 97, 2934, 2000.

Gang, D., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E., An investigation of the storage and biosynthesis of phenylpropenes in sweet basil, *Plant Physiol.* 125, 539, 2001.

Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D., Rose scent: genomic approach to discover novel floral fragrance-related genes, *Plant Cell* 14, 2325, 2002.

Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E., and Gershenson, J., Biosynthesis and emission of terpenoid volatiles from *Arabidopsis* flowers, *Plant Cell* 15, 481, 2003.

Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., Faldt, J., Miller, B., and Bohlmann, J., (E)- $\{\beta\}$ -ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily, *Plant Cell* 15, 1227, 2003.

Bauer, K., Garbe, D., and Surburg, H., *Common Fragrance and Flavor Materials*, Wiley-VCH, Weinheim, 2001.

Kaiser, R.D., Scent from rain forest, *Chimia* 54, 346, 2000.

Channeliere, S., Riviere, S., Scalliet, G., Jullien, F., Szecsi, J., Dolle, C., Vergne, P., Dumas, C., Bendahmane, M., Hugueney, P., and Cock, J.M., Analysis of gene expression in rose petals using expressed sequence tags, *FEBS Lett.* 515, 35, 2002.

Francis, M.J.O. and Allcock, O., Geraniol beta-D-glucoside: occurrence and synthesis in rose flowers, *Phytochemistry* 8, 1339, 1969.

Suzuki, K. et al., Molecular characterization of rose flavonoid biosynthesis genes and their application in petunia, *Biotechnol. Biotechnol. Equip.* 14, 56, 2000.

Schünemann, P.H.D., Smith, R.C., Lang, V., Matthews, P.R., and Chandler, P.M., Expression of XET-related genes and its correlation to elongation in leaves of barley (*Hordeum vulgare* L.), *Plant Cell Environ.* 20, 1439, 1997.

Shi, L., Gast, R.T., Golparaj, M., and Olszewski, N.E., Characterization of a shoot-specific, GA₃- and ABA-regulated gene from tomato, *Plant J.* 2, 623, 1992.

Uimari, A. and Strommer, J., Myb26: a MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes, *Plant J.* 12, 1273, 1997.

Lavid, N., Wang, J., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E., *O*-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals, *Plant Physiol.* 129, 1899, 2002.

Colby, S.M., Crock, J., Dowdle-Rizzo, B., Lemaux, P., and Croteau, R., Germacrene C synthase from *Lycopersicon esculentum* cv. VFNT cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase, *Proc. Natl. Acad. Sci. USA* 95, 2216, 1998.

Bohlman, J., Gershenzon, J., and Aubourg, S., Biochemical, molecular genetic and evolutionary aspects of defense-related terpenoid metabolism in conifers, in *Recent Advances in Phytochemistry*, vol. 34, *Evolution of Metabolic Pathways*, Romeo, J.T., Ibrahim, R., Varin L. and De Luca, V., Eds., Pergamon Press, New York, 2000, p. 109.

Pichersky, E. and Gang, D.R., Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective, *Trends Plant Sci.* 5, 439, 2000.

Vainstein, A., Adam, Z., Zamir, D., Weiss, D., Lewinsohn, E., and Pichersky, E., Rose fragrance: genomic approaches and metabolic engineering, *Acta Hort.* 612, 105, 2003.

Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E., Volatile ester formation in roses. Identification of an acetyl-coenzyme A. geraniol/citronellol acetyltransferase in developing rose petals, *Plant Physiol.* 131, 1868, 2003.

Ibrahim, R.K., Bruneau, A., and Bantignies, B., Plant O-methyltransferases: molecular analysis, common signature and classification, *Plant Mol. Biol.* 36, 1, 1998.

Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Durmas, C., Bendahmane, M., Cock, J.M., and Hugueney, P., Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases, *FEBS Lett.* 523, 113, 2002.

Knudsen, J.T., Tollsten, L., and Bergström, G., Floral scents: a checklist of volatile compounds isolated by head-space techniques, *Phytochemistry* 33, 253, 1993.

Arcangeli, D.I.G., Osservazioni sull impollinazione in alcune aracee, *Nuovo Giorn. Bot. Ital.* 7, 72, 1883.

Vogel, S., Duftrüsen im Dienste der Bestäubung, *Akad. Wiss. Lit. Mainz Math.-Nat. Klasse* 10, 600, 1962.

Vogel, S., *The Role of Scent Glands in Pollination: On the Structure and Function of Osmophores*, Amerind, New Delhi, India, 1990.

Pridgeon, A.M. and Stern, W.L., Osmophores of *Scaphosepalum* (Orchidaceae), *Bot. Gaz.* 146, 115, 1985.

Stern, W.L., Curry, K.J., and Pridgeon, A.M., Osmophores of *Stanhopea* (Orchidaceae), *Am. J. Bot.* 74, 1323, 1987.

Curry, K.J., Initiation of terpenoid synthesis in osmophores of *Stanhopea anfracta* (Orchidaceae): a cytochemical study, *Am. J. Bot.* 74, 1332, 1987.

Curry, K.J., Stern, W.L., and McDowell, L.M., Osmophore development in *Stanhopea anfracta* and *S. pulla* (Orchidaceae), *Lindleyana* 3, 212, 1988.

Curry, K.J., McDowell, L.M., Judd, W.S., and Stern, W.L., Osmophores, floral features, and systematics of *Stanhopea* (Orchidaceae), *Am. J. Bot.* 78, 610, 1991.

Davies, K.L. and Turner, M.P., Morphology of floral papillae in *Maxillaria Ruiz & Pav.* (Orchidaceae), *Ann. Bot.* 93, 75, 2004.

Skubatz, H., Kunkel, D.D., Patt, J.M., Howald, W.N., Hartman, T.G., and Meeuse, B.J.D., Pathway of terpene excretion by the appendix of *Sauromatum guttatum*, *Proc. Natl. Acad. Sci. USA* 92, 10084, 1995.

Hudak, K.A. and Thompson, J.E., Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals, *Plant Physiol.* 114, 705, 1997.

Skubatz, H., Kunkel, D.D., Howald, W.N., Trenkle, R., and Mookherjee, B., The *Sauromatum guttatum* appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insects, *New Phytol.* 134, 631, 1996.

Hadacek, F. and Weber, M., Club-shaped organs as additional osmophores within the *Sauromatum inflorescence*: odour analysis, ultrastructural changes and pollination aspects, *Plant Biol.* 4, 367, 2002.

Pridgeon, A.M. and Stern, W.L., Ultrastructure of osmophores in *Restrepia* (Orchidaceae), *Am. J. Bot.* 70, 1233, 1983.

Stern, W.L., Curry, K.J., and Whitten, W.M., Staining fragrance glands in orchid flowers, *Bull. Torrey Bot. Club* 113, 288, 1986.

Ascensão, L., Mota, L., and de M. Casto, M., Glandular trichomes on the leaves and flowers of *Plectranthus ornatus*: morphology, distribution and histochemistry, *Ann. Bot.* 84, 437, 1999.

Rudall, P.J., Bateman, R.M., Fay, M.F., and Eastman, A., Floral anatomy and systematics of Alliaceae with particular reference to *Gilliesia*, a presumed insect mimic with strongly zygomorphic flowers, *Am. J. Bot.* 89, 1867, 2002.

Luckow, M. and Grimes, J., A survey of anther glands in the mimosoid legume tribes Parkieae and Mimosae, *Am. J. Bot.* 84, 285, 1997.

Bussell, B.M., Considine, J.A., and Spadek, Z.E., Flower and volatile oil ontogeny in *Boronia megastigma*, *Ann. Bot.* 76, 457, 1995.

Sazima, M., Vogel, S., Cocucci, A.A., and Hausner, G., The perfume flowers of *Cyphomandra* (Solanaceae): pollination by euglossine bees, bellows mechanism, osmophores, and volatiles, *Plant Syst. Evol.* 187, 51, 1993.

Skubatz, H. and Kunkel, D.D., Further studies of the glandular tissue of the *Sauromatum guttatum* (Araceae) appendix, *Am. J. Bot.* 86, 841, 1999.

Whitten, W.M. and Williams, N.H., Floral fragrance of *Stanhopea* (Orchidaceae), *Lindleyana* 7, 130, 1992.

MacTavish, H.S. and Menary, R.C., Volatiles in different floral organs, and effect of floral characteristics on yield of extract from *Boronia megastigma* (Nees), *Ann. Bot.* 80, 305, 1997.

MacTavish, H.S., Davies, N.W., and Menary, R.C., Emission of volatiles from brown *Boronia* flowers: some comparative observations, *Botany* 86, 347, 2000.

Raguso, R.A. and Pichersky, E., A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants, *Plant Spec. Biol.* 14, 95, 1999.

Mazurkiewicz, W., Über die Verteilung des ätherischen Oeles im Blütenparenchym und über seine Lokalisation im Zellplasma, *Zeitschr. Allgem. österr. Apotheker-Vereins* 23, 805, 1913.

Kolosova, N., Sherman, D., Karlson, D., and Dudareva, N., Cellular and subcellular localization of S-adenosyl-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers, *Plant Physiol.* 126, 956, 2001.

Lopez, H.A. and Galetto, L., Flower structure and reproductive biology of *Bougainvillea stipitata* (Nyctaginaceae), *Plant Biol.* 4, 508, 2002.

Effmert, U., Große, J., Röse, U., Ehrig, F., Kägi, R., and Piechulla, B., Volatile composition, emission pattern and localization of floral scent emission in *Mirabilis jalapa* (Nyctaginaceae), *Am. J. Bot.* 92, 2, 2005.

Goodwin, S.M., Kolosova, N., Kish, C.M., Wood, K.V., Dudareva, N., and Jenks, M.A., Cuticle characteristics and volatile emission of petals in *Antirrhinum majus*, *Physiol. Plant.* 117, 435, 2003.

Dudareva, N., Cseke, L., Blanc, V.M., and Pichersky, E., Evolution of floral scent in *Clarkia*: novel patterns of S-linalool synthase gene expression in the *C. breweri* flower, *Plant Cell* 8, 1137, 1996.

Pichersky, E., Raguso, R.A., Lewinsohn, E., and Croteau, R., Floral scent production in *Clarkia* (Onagraceae). I. Localization and developmental modulation of monoterpane emission and linalool synthase activity, *Plant Physiol.* 106, 1533, 1994.

Wang, J., Dudareva, N., Bhakta, S., Raguso, R.A., and Pichersky, E., Floral scent production in *Clarkia breweri* (Onagraceae). II. Localization and developmental modulation of the enzyme S'-adenosyl-L-methionine:(iso)eugenol O-methyltransferase and phenylpropanoid emission, *Plant Physiol.* 114, 213, 1997.

Dudareva, N., Raguso, R.A., Wang, J., Ross, J.R., and Pichersky, E., Floral scent production in *Clarkia breweri*. III. Enzymatic synthesis and emission of benzenoid esters, *Plant Physiol.* 116, 599, 1998.

Flamini, G., Cioni, P.L., and Morelli, I., Differences in the fragrances of pollen, leaves, and floral parts of garland (*Chrysanthemum coronarium*) and composition in the essential oils from flower heads and leaves, *J Agric. Food. Chem.* 51, 2267, 2003.

Dobson, H.E.M., Bergström, G., and Groth, I., Differences in fragrance chemistry between flower parts of *Rosa rugosa* Thunb. (Rosaceae), *Isr. J. Bot.* 39, 143, 1990.

Bergström, G., Dobson, H.E.M., and Groth, I., Spatial fragrance patterns within the flowers of *Ranunculus acris* (Ranunculaceae), *Plant Syst. Evol.* 195, 221, 1995.

Heath, R.R. and Manukian, A., An automated system for use in collecting volatile chemicals released from plants, *J. Chem. Ecol.* 20, 593, 1994.

Levin, R.A., McDade, L.A., and Raguso, L.A., The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae, *Syst. Biol.* 52, 334, 2003.

Lex, T., Duftmale an Blüten, *Zeitschr. Vergl. Physiol.* 36, 212, 1954.

Dobson, H.E.M., Groth, I., and Bergström, G., Pollen advertisement: chemical contrasts between whole-flower and pollen odors, *Am. J. Bot.* 83, 877, 1996.

Dobson, H.E.M. and Bergström, G., The ecology and evolution of pollen odors, *Plant Syst. Evol.* 222, 63, 2000.

Svoboda, K. and Svoboda, T., *Secretory Structures of Aromatic and Medicinal Plants: A Review and Atlas of Micrographs*, Microscopix Publications, Knighton 2000, p. 3.

Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E., An investigation of the storage and biosynthesis of phenylpropanes in sweet basil, *Plant. Physiol.* 125, 539, 2001.

Pichersky, E. and Gershenson, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, *Curr. Opin. Biol.* 5, 237, 2002.

Levin, D.A., The role of trichomes in plant defense, *Q. Rev. Biol.* 48, 3, 1973.

Agren, J. and Schemske, D.W., Evolution of trichome number in a naturalized population of *Brassica rapa*, *Am. Nat.* 143, 1, 1994.

Fernandes, G.W., Plant mechanical defenses against insect herbivory, *Rev. Bras. Entomol.* 38, 421, 1994.

Mauricio, R. and Rausher, M.D., Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense, *Evolution* 51, 1435, 1997.

Myers, J.H. and Bazely, D.R., Thorns, spines, prickles, and hairs: are they stimulated by herbivory and do they deter herbivores, in *Phytochemical Induction by Herbivores*, Raupp, M.J. and Tallamy, D.W., Eds., Wiley, New York, 1991, p. 325.

Agrawal, A.A., Induced responses to herbivory and increased plant performance, *Science* 279, 1201, 1998.

Agrawal, A.A., Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness, *Ecology* 80, 1713, 1999.

Agrawal, A.A., Benefits and costs of induced plant defense for *Lepidium virginicum* (Brassicaceae), *Ecology* 81, 1804, 2000.

Pullin, A.S. and Gilbert, J.E., The stinging nettle, *Urtica dioica*, increases trichome density after herbivore and mechanical damage, *Oikos* 54, 275, 1989.

Baur, R., Binder, S., and Benz, G., Nonglandular leaf trichomes as short-term inducible defense of the grey alder, *Alnus incana* (L.), against the chrysomelid beetle, *Agelastica alni*, *L.*, *Oecologia* 87, 219, 1991.

Traw, M.B., Is induction response negatively correlated with constitutive resistance in black mustard?, *Evolution* 56, 2196, 2002.

Traw, M.B. and Dawson, T.E., Differential induction of trichomes by three herbivores of black mustard, *Oecologia* 131, 526, 2002.

Traw, M.B. and Dawson, T.E., Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants, *Environ. Entomol.* 31, 714, 2002.

Traw, M.B. and Bergelson, J., Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in *Arabidopsis*, *Plant Physiol.* 133, 1367, 2003.

Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., and Howe, G.A., The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development, *Plant Cell* 16, 126, 2004.

Pott, M.B., Pichersky, E., and Piechulla, B., Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of *Stephanotis floribunda*, *J. Plant. Physiol.* 159, 925, 2002.

Raguso, R.A., Levin, R.A., Foose, S.E., Holmberg, M.W., and McDade, L.A., Fragrance chemistry nocturnal rhythms and pollination “syndromes” in *Nicotiana*, *Phytochemistry* 63, 265, 2003.

Mattern, G. and Vogel, S., Lamiaceen-Blüten duften mit dem Kelch – Prüfung einer Hypothese. I. Anatomische Untersuchungen. Vergleich der Laub-und Kelchdrüsen, *Beitr. Biol. Pflanzen* 68, 125, 1994.

Ascensão, L., Figueiredo, A.C., Barroso, J.G., Pedro, L.G., Schripsema, J., Deans, S.G., and Scheffer, J.C.J., *Plectranthus madagascariensis*: morphology of the glandular trichomes, essential oil composition, and its biological activity, *Int. J. Plant Sci.* 159, 31, 1998.

Werker, E., Ravid, U., and Putievsky, E., Glandular hairs and their secretions in the vegetative and reproductive organs of *Salvia sclarea* and *S. dominica*, *Isr. J. Bot.* 34, 239, 1985.

Gibson, R.W. and Pickett, J.A., Wild potato repels aphids by release of aphid alarm pheromone, *Nature* 302, 608, 1983.

Ave, D.A., Gregory, P., and Tingey, W.M., Aphid repellent sesquiterpenes in glandular trichomes of *Solanum berthaultii* and *S. tuberosum*, *Entomol. Exp. Appl.* 44, 131, 1987.

Mondor, B., Baird, S., Slessor, K., and Roitberg, B., Ontogeny of alarm pheromone secretion in pea aphid, *Acyrtosiphon pisum*, *J. Chem. Ecol.* 26, 2875, 2000.

Moyano, F., Cocucci, A.A., and Sérsic, A.N., Accessory pollen adhesive from glandular trichomes on the anthers of *Leonurus sibiricus* L. (Lamiaceae), *Plant Biol.* 5, 411, 2003.

Vogel, S. Die Klebstoffhaare an den Antheren von *Cyclanthera pedata* (Curcurbitaceae), *Plant Syst. Evol.* 137: 291, 1981.

Vogel, S. Blütensekrete als akzessorischer Pollenkitt, *Mitteil. Botaniker-Tagung Wien* 123, 1984.

Steiner, K.E., The role of nectar and oil in the pollination of *Drymonia serrulata* (Gesneriaceae) by Epicharis bees (Anthophoridea) in Panama, *Biotropica* 17, 217, 1985.

Dudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A., and Pichersky, E., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, *Plant Cell* 12, 949, 2000.

Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., Fäldt, J., Miller, B., and Bohlmann, J., (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily, *Plant Cell* 15, 1227, 2003.

Negre, F., Kish, C., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D., and Dundareva, N., Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers, *Plant Cell* 15, 1, 2003.

Dudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A., and Pichersky, E., Acetyl-CoA:benzylalcohol acetyltransferase: an enzyme involved in floral scent production in *Clarkia breweri*, *Plant J.* 14, 297, 1998.

Raguso, R.A. and Pichersky, E., Floral volatiles from *Clarkia breweri* and *C. concinna* (Onagraceae): recent evolution of floral scent and moth pollination, *Plant Syst. Evol.* 194, 55, 1995.

Vogel, S., Duftdrüsen im Dienste der Bestäubung. Über Bau und Funktion der Osmophoren, *Abhandlungen der Math.-Naturw. Klasse* 10, 46, 1962.

Pichersky, E., Raguso, R.A., Lewinsohn, E., and Croteau, R., Floral scent production in *Clarkia* (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity, *Plant Physiol.* 106, 1533, 1994.

Raguso, R.A. and Pichersky, E., A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. I. Linalool biosynthesis in flowering plants. *Plant Spec. Biol.* 14, 95, 1999.

Kolosova, N., Sherman, D., Karlson, D., and Dudareva, N., Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers, *Plant Physiol.* 126, 956, 2001.

Wise, M.L. and Croteau, R., Monoterpene biosynthesis, in *Comprehensive Natural Products Chemistry: Isoprenoids*, vol. 2, Cane, D.E., Ed., Elsevier Science, London, 1999, p. 97.

Kleinig, H., The role of plastids in isoprenoid biosynthesis, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 40, 39, 1989.

Lichtenthaler, H.K., The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 50, 47, 1999.

Turner, G., Gershenzon, J., Nielson, E.E., Froehlich, J.E., and Croteau, R., Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells, *Plant Physiol.* 120, 9966, 1999.

Loreto, F., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., and Sharkey, T.D., Different sources of reduced carbon contribute to form three classes of terpenoid emitted by *Quercus ilex* L. leaves, *Proc. Natl. Acad. Sci. USA* 93, 4126, 1996.

Mettal, U., Boland, W., Beyer, P., and Kleinig, H., Biosynthesis of monoterpene hydrocarbons by isolated chromoplasts from daffodil flowers, *Eur. J. Biochem.* 170, 613, 1988.

Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., Faldt, J., Miller, B., and Bohlmann, J., (E)- β -Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily, *Plant Cell* 15, 1227, 2003.

Tholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E., and Dudareva, N., Formation of monoterpenes in *Antirrhinum majus* and *Clarkia breweri* flowers involves heterodimeric geranyl diphosphate synthases, *Plant Cell* 16, 977, 2004.

Bohlmann, J., Meyer-Gauen, G., and Croteau, R., Plant terpenoid synthases: molecular biology and phylogenetic analysis, *Proc. Natl. Acad. Sci. USA* 95, 4126, 1998.

Picone, J.M., Clery, R.A., Watanabe, N., MacTavish, H.S., and Turnbull, C.G., Rhythmic emission of floral volatiles from *Rosa damascena semperflorens* cv. "Quatre Saisons," *Planta* 219, 468, 2004.

Negre, F., Kish, C.M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D.G., and Dudareva, N., Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers, *Plant Cell* 15, 2992, 2003.

Skubatz, H., Kunkel, D.D., Patt, J.M., Howald, W.N., Hartman, T.G., and Meeuse, B.J., Pathway of terpene excretion by the appendix of *Sauvagesia guttatum*, *Proc. Natl. Acad. Sci. USA* 92, 10084, 1995.

Leo, A., Hansch, C., and Elkins, D., Partition coefficients and their uses, *Chem. Rev.* 71, 525, 1971.

Müller, M.T., Zehner, A.J.B., and Escher, B.I., Liposome-water and octanol-water partitioning of alcohol ethoxylates, *Environ. Toxicol. Chem.* 18, 2191, 1999.

Sherblom, P.M., Gschwend, P.M., and Eganhouse, R.P., Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9–C14 linear alkylbenzenes, *J. Chem. Eng. Data* 37, 394, 1992.

Griffin, S., Wyllie, S.G., and Markham, J., Determination of octanol-water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography, *J. Chromatogr. A* 864, 221, 1999.

Weidenhamer, J.D., Macias, F.A., Fischer, N.H., and Williamson, G.B., Just how insoluble are monoterpenes, *J. Chem. Ecol.* 19, 1799, 1993.

Theodoulou, F.L., Plant ABC transporters, *Biochim. Biophys. Acta* 1465, 79, 2000.

Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., and Samuels, A.L., Plant cuticular lipid export requires an ABC transporter, *Science* 306, 702, 2004.

Otsu, C.T., da Silva, I., de Molfetta, J.B., da Silva, L.R., de Almeida-Engler, J., Torraca, P.C., Goldman, G.H., and Goldman, M.H., NtWBC1, an ABC transporter gene specifically expressed in tobacco reproductive organs, *J. Exp. Bot.* 55, 1643, 2004.

Kader, J.-C., Lipid-transfer proteins in plants, *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 47, 627, 1996.

Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K.J., Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly, *Planta* 203, 9, 1997.

Kerstiens, G., *Plant Cuticles*, 1st ed., BIOS Scientific, Oxford, 1996.

Galen, C., Sherry, R.A., and Carroll, A.B., Are flowers physiological sinks or faucets? Costs and correlates of water use by flowers of *Polemonium viscosum*, *Oecologia* 118, 461, 1999.

Holloway, P.J., The chemical constitution of plant cutins, in *The Plant Cuticle*, Linnean Society Symposium Series, vol. 10, Cutler, D.F., Alvin, K.L., and Price, C.E., Eds., Academic Press, London, 1982, p. 45.

Kolattukudy, P.E., Biochemistry and function of cutin and suberin, *Can. J. Bot.* 62, 2918, 1984.

Schmidt, H.W. and Schönherr, J., Development of plant cuticles: occurrence and role of non-ester bonds in cutin of *Clivia miniata* Reg. leaves, *Planta* 156, 380, 1982.

Heredia, A., Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer, *Biochim. Biophys. Acta* 1620, 1, 2003.

Stark, R.E., Zlotnik-Mazori, T., Ferrantello, L.M., and Garbow, J.R., Molecular structure and dynamics of intact plant polyesters: solid-state NMR studies, in Lewis, N.G. and Paice, M.G., Eds., *Plant Cell Wall Polymers: Biogenesis and Biodegradation*, ACS Symposium Series, vol. 399, American Chemical Society, Washington, DC, 1989, p. 214.

Lai, S., Lai, A., Stange, R.R., Jr., McCollum, T.G., and Schirra, M., Characterization of the wound-induced material in *Citrus paradisi* fruit peel by carbon-13 CP-MAS solid state NMR spectroscopy, *Phytochemistry* 63, 177, 2003.

Villena, J.F., Dominguez, E., Stewart, D., and Heredia, A., Characterization and biosynthesis of non-degradable polymers in plant cuticles, *Planta* 208, 181, 1999.

Deshmukh, A.P., Simpson, A.J., and Hatcher, P.G., Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy, *Phytochemistry* 64, 1163, 2003.

Hager, D., *Zusammensetzung und Funktion der Kutikula von Bluetenblaettern*, Diploma Thesis, University of Wuerzburg, 2003.

Kunst, L. and Samuels, A.L., Biosynthesis and secretion of plant cuticular wax, *Prog. Lipid Res.* 42, 51, 2003.

Baker, E.A., Chemistry and morphology of plant epicuticular waxes, in *The Plant Cuticle*, Linnean Society Symposium Series, vol. 10, Cutler, D.F., Alvin, K.L., and Price, C.E., Eds., Academic Press, London, 1982, p. 139.

Jeffree, C.E. Structure and ontogeny of plant cuticles, in *Plant Cuticles: An Integrated Functional Approach*, Kerstiens, G., Ed., BIOS Scientific, Oxford, 1996, p. 33.

Gülz, P.-G. et al., Untersuchungen über die Kutikularwachse in der Gattung *Cistus* L. (Cistaceae). VI. Die Zusammensetzung der Alkene aus *Cistus*-Petalen und die Lage der Doppelbindung in diesen Alkenen am Beispiel von 3 *Cistus*-Arten, *Z. Pflanzenphysiol.* 94, 35, 1979.

Gülz, P.-G., Proksch, P., and Schwarz, D., Untersuchungen über die Kutikularwachse in der Gattung *Cistus* L. (Cistaceae). V. Zusammenfassende Darstellung über die Kohlenwasserstoffe und Wachsester aus den Epikutikularwachsen der Blätter und Petalen, *Z. Pflanzenphysiol.* 92, 341, 1979.

Mladenova, K., Stoianova-Ivanova, B., and Daskalov, R.M., Trialkyltrioxanes in flower wax of some decorative roses, *Phytochemistry* 15, 419, 1976.

Stoianova-Ivanova, B., Mladenova, K., and Popow, S., The composition and structure of ketones from rose bud and rose flower waxes, *Phytochemistry* 10, 1391, 1971.

Stransky, K. and Streibl, M., On natural waxes 12. Composition of hydrocarbons in morphologically different plant parts, *Coll. Czech.* 34, 103, 1969.

Salasoo, I., Alkane distribution in epicuticular wax of Epacridaceae, *Phytochemistry* 22, 937, 1983.

Griffiths, D.W., Robertson, G.W., Shepherd, T., Birch, A.N., Gordon, S.C., and Woodford, J.A., A comparison of the composition of epicuticular wax from red raspberry (*Rubus idaeus* L.) and hawthorn (*Crataegus monogyna* Jacq.) flowers, *Phytochemistry* 55, 111, 2000.

Hennig, S., Gülz, P.-G., and Hangst, K., Organ specific composition of epicuticular waxes of *Cistus albidus* L. Cistaceae, *Z. Naturforsch. C* 43, 806, 1988.

Wollrab, V., Secondary alcohols and paraffins in the plant waxes of the family Rosaceae, *Phytochemistry* 8, 623, 1969.

Stoianova-Ivanova, B., Hadjieva, P., and Tamas, J., Nonacosane-5,8-diol: a new component of plant waxes, *Phytochemistry* 13, 1523, 1974.

Hadjieva, P., Stoianova-Ivanova, B., and Danieli, B., Composition and structure of lactones from rose flower wax, *Chem. Phys. Lipids* 12, 60, 1974.

Goodwin, S.M., Kolosova, N., Kish, C.M., Wood, K.V., Dudareva, N., and Jenks, M.A., Cuticle characteristics and volatile emissions of petals in *Antirrhinum majus* L., *Physiol. Plant.* 117, 435, 2002.

Griffiths, D.W., Robertson, G.W., Shepherd, T., and Ramsay, G., Epicuticular waxes and volatiles from faba bean (*Vicia faba*) flowers, *Phytochemistry* 52, 607, 1999.

Schreiber, L., Kirsch, T., and Riederer, M., Diffusion through cuticles: principles and models, in *Plant Cuticles: An Integrated Functional Approach*, Kerstiens, G., Ed., BIOS Scientific, Oxford, 1996, p. 109.

Schönherr, J. and Schreiber, L., Size selectivity of aqueous pores in astomatous cuticular membranes isolated from *Populus canescens* (Aiton) Sm. leaves, *Planta* 219, 405, 2004.

Schönherr, J., Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water, *Planta* 131, 159, 1976.

Riederer, M. and Schreiber, L., Protecting against water loss: analysis of the barrier properties of plant cuticles, *J. Exp. Bot.* 52, 2023, 2001.

Riederer, M. and Schreiber, L., Waxes: the transport barriers of plant cuticles, in *Waxes: Chemistry, Molecular Biology and Functions*, Hamilton, R.J., Ed., The Oily Press, Dundee, 1995, 131.

Reynhardt, E.C. and Riederer, M., Structure and molecular dynamics of the cuticular wax from leaves of *Citrus aurantium*, *J. Phys. D Appl. Phys.* 24, 478, 1991.

Reynhardt, E.C. and Riederer, M., Structures and molecular dynamics of plant waxes II. Cuticular waxes from leaves of *Fagus sylvatica* L. and *Hordeum vulgare* L., *Eur. Biophys. J.* 23, 59, 1994.

Williams, N.H., Floral fragrances as cues in animal behavior, in *Handbook of Experimental Pollination*, Jones, C.E. and Little, R.J., Eds., Van Nostrand-Reinhold, New York, 1983, p. 50.

Stern, W.L., Curry, K.J., and Pridgeon, A.M., Osmophores of *Stanhopea* (Orchidaceae), *Am. J. Bot.* 74, 1323, 1987.

Curry, K.J., Initiation of terpenoid synthesis in osmophores of *Stanhopea anfracta* (Orchidaceae): a cytochemical study, *Am. J. Bot.* 74, 1332, 1987.

Noda, K., Glover, B.J., Linstead, P., and Martin, C., Flower color intensity depends on specialized cell shape controlled by a Myb-related transcription factor, *Nature* 369, 661, 1994.

Vincent, C.A. and Coen, E.S., A temporal and morphological framework for flower development in *Antirrhinum majus*, *Can. J. Bot.* 82, 681, 2004.

Vogel, S., Remarkable nectaries: structure, ecology, organophyletic perspectives. 2. Nectarioles, *Flora* 193, 1, 1998.

Eveling, D.W., Examination of the cuticular surfaces of fresh delicate leaves and petals with a scanning electron microscope: a control for artifacts, *N. Phytol.* 96, 220, 1984.

Watanabe, N., Watanabe, S., Nakajima, R., Moon, J.H., Shimokihira, K., Inagaki, J., Etoh, H., Asai, T., Sakata, K., and Ina, K., Formation of flower fragrance compounds from their precursors by enzymatic action during flower opening, *Biosci. Biotech. Biochem.* 57, 1101, 1993.

Loughrin, J., Hamilton-Kemp, T.R., Burton, H.R., Andersen, R.A., and Hildebrand, D.F., Glycosidically bound volatile components of *Nicotiana sylvestris* and *N. suaveolens* flowers, *Phytochemistry* 31, 1537, 1992.

Lücker, J., Bouwmeester, H.J., Schwab, W., Blaas, J., van Der Plas, L.H., and Verhoeven, H.A., Expression of *Clarkia* S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside, *Plant J.* 27, 315, 2001.

Dobson, H.E.M., Floral volatiles in insect biology, in *Insect-Plant Interactions*, vol. 5, Bernays, E.A., Ed., CRC Press, Boca Raton, FL, 1994, p. 47.

Raguso, R.A., Floral scent, olfaction, and scent-driven foraging behavior, in *Cognitive Ecology of Pollination*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, 2001, p. 83.

Weiss, M.R., Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies, in *Cognitive Ecology of Pollination*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, 2001, p. 171

Faegri, K. and van der Pijl, L., *The Principles of Pollination Ecology*, 3rd ed., Pergamon, Oxford, 1979.

Proctor, M., Yeo, P., and Lack, A., *The Natural History of Pollination*, Timber Press, Portland, OR, 1996.

Kandori, I., Diverse visitors with various pollinator importance and temporal change in the important pollinators of *Geranium thunbergii* (Geraniaceae), *Ecol. Res.* 17, 283, 2002.

Waser, N.M., Chittka, L., Price, M.V., Williams, N.M., and Ollerton, J., Generalization in pollination systems, and why it matters, *Ecology* 77, 1043, 1996.

Armbruster, W.S., Fenster, C.B., and Dudash, M.R., Pollination “principles” revisited: specialization, pollination syndromes, and the evolution of flowers, *Norske Vidensk. – Akad. I. Mat. Naturvid. Kl. Skrif. Ny Ser.* 39, 179, 2000.

Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., and Thomson, J.D., Pollination syndromes and floral specialization, *Annu. Rev. Ecol. Syst.* 35, 375, 2004.

Endress, P.K., *Diversity and Evolutionary Biology of Tropical Flowers*, Cambridge University Press, 1994.

Knudsen, J.T. and Tollsten, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa, *Bot. J. Linn. Soc.* 113, 263, 1993.

Knudsen, J.T. and Tollsten, L., Floral scent in bat-pollinated plants: a case of convergent evolution, *Bot. J. Linn. Soc.* 119, 45, 1995.

Andersson, S., Nilsson, L.A., Groth, I., and Bergström, G., Floral scents in butterfly-pollinated plants: possible convergence in chemical composition, *Bot. J. Linn. Soc.* 140, 129, 2002.

Knudsen, J.T., Tollsten, L., Groth, I., Bergström, G., and Raguso, R.A., Trends in floral scent chemistry in pollination syndromes: floral scent composition in hummingbird-pollinated taxa, *Bot. J. Linn. Soc.* 146, 191, 2004.

Levin, R.A., Raguso, R.A., and McDade, L.A., Fragrance chemistry and pollinator affinities in Nyctaginaceae, *Phytochemistry* 58, 429, 2001.

Raguso, R.A., Levin, R.A., Foose, S.E., Holmberg, M.W., and McDade, L.A., Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in *Nicotiana*, *Phytochemistry* 63, 265, 2003.

Jürgens, A., Witt, T., and Gottsberger, G., Flower scent composition in night-flowering *Silene* species (Caryophyllaceae), *Biochem. Syst. Ecol.* 30, 383, 2002.

Jürgens, A., Witt, T., and Gottsberger, G., Flower scent composition in *Dianthus* and *Saponaria* species (Caryophyllaceae) and its relevance for pollination biology and taxonomy, *Biochem. Syst. Ecol.* 31, 345, 2003.

Jürgens, A., Flower scent composition in diurnal *Silene* species (Caryophyllaceae): phylogenetic constraints or adaptation to flower visitors?, *Biochem. Syst. Ecol.* 32, 841, 2004.

Manning, J.C. and Goldblatt, P., Radiation of pollination systems in the Cape genus *Tritoniopsis* (Iridaceae: Crocoideae) and the development of bimodal pollination strategies, *Int. J. Plant Sci.* 166, 459, 2005.

Knudsen, J.T., Tollsten, L., and Bergström, G., Floral scents: a checklist of volatile compounds isolated by head-space techniques, *Phytochemistry* 33, 253, 1993.

Raguso, R.A., Why do flowers smell? The chemical ecology of fragrance-driven pollination, in *Advances in Insect Chemical Ecology*, Cardé, R.T. and Millar, J.G., Eds., Cambridge University Press, 2004, p. 151.

Pelletier, L., Brown, A., Otrysko, B., and McNeil, J.N., Entomophily of the cloudberry (*Rubus chamaemorus*), *Entomol. Exp. Appl.* 101, 219, 2001.

Zych, M., Pollination biology of *Heracleum sphondylium* L. (Apiaceae): the advantages of being white and compact, *Acta Soc. Bot. Poloniae* 71, 163, 2002.

Tollsten, L., Knudsen, J.T., and Bergström, G., Floral scent in generalistic *Angelica* (Apiaceae): an adaptive character?, *Biochem. Syst. Ecol.* 22, 161, 1994.

Tollsten, L., and Øvstedral, D.O., Differentiation in floral scent chemistry among populations of *Conopodium majus* (Apiaceae), *Nord. J. Bot.* 14, 361, 1994.

Robertson, G.W., Griffiths, D.W., Woodford, J.A.T., and Birch, A.N.E., A comparison of the flower volatiles from hawthorn and four raspberry cultivars, *Phytochemistry* 33, 1047, 1993.

Robertson, G.W., Griffiths D.W., Woodford, J.A.T., and Birch, A.N.E., Changes in the chemical composition of volatiles released by the flowers and fruits of the red raspberry (*Rubus idaeus*) cultivar Glen Prosen, *Phytochemistry* 38, 1175, 1995.

Bergström, G., Dobson, H.E.M., and Groth, I., Spatial fragrance patterns within the flowers of *Ranunculus acris* (Ranunculaceae), *Plant Syst. Evol.* 195, 221, 1995.

Knudsen, J.T., Tollsten, L., and Ervik, F., Flower scent and pollination in selected neotropical palms, *Plant Biol.* 3, 642, 2001.

Nilsson, L.A., The pollination ecology of *Listera ovata* (Orchidaceae), *Nord. J. Bot.* 1, 461, 1981.

Custódio, L., Nogueira, J.M.F., and Romano, A., Sex and developmental stage of carob flowers affects composition of volatiles, *J. Hort. Sci. Technol.* 79, 689, 2004.

Borg-Karlson, A.-K., Valterová, I., and Nilsson, L.A., Volatile compounds from flowers of six species in the family Apiaceae: bouquets for different pollinators, *Phytochemistry* 35, 111, 1994.

Tollsten, L. and Knudsen, J.T., Floral scent in dioecious *Salix* (Salicaceae): a cue determining the pollination system?, *Plant Syst. Evol.* 182, 229, 1992.

Dobson, H.E.M., Groth, I., and Bergström, G., Pollen advertisement: chemical contrasts between whole-flower and pollen odors, *Am. J. Bot.* 83, 877, 1996.

Bernhardt, P., Sage, T., Weston, P., Azuma, H., Lam, M., Thien, L.B., and Bruhl, J., The pollination of *Trimenia moorei* (Trimeniaceae): floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm, *Ann. Bot.* 92, 445, 2003.

Borg-Karlson, A.-K., Unelius, C.R., Valterová, I., and Nilsson, L.A., Floral fragrance chemistry in the early flowering shrub *Daphne mezereum*, *Phytochemistry* 41, 1477, 1996.

Patt, J.M., Rhoades, D.F., and Corkill, J.A., Analysis of the floral fragrance of *Platanthera stricta*, *Phytochemistry* 27, 91, 1988.

Patt, J.M., Merchant, M.W., Williams, D.R.E., and Meeuse, B.J.D., Pollination biology of *Platanthera stricta* (Orchidaceae) in Olympic National Park, Washington, *Am. J. Bot.* 76, 1097, 1989.

Raguso, R.A. and Roy, B.A., "Floral" scent production by *Puccinia* rust fungi that mimic flowers, *Mol. Ecol.* 7, 1127, 1998.

Bernhardt, P., Convergent evolution and adaptive radiation of beetle-pollinated angiosperms, *Plant Syst. Evol.* 222, 293, 2000.

Silberbauer-Gottsberger, I., Gottsberger, G., and Webber, A.C., Morphological and functional flower characteristics of New and Old World Annonaceae with respect to their mode of pollination, *Taxon* 52, 701, 2003.

Mookherjee, B.D., Trenkle, R.W., and Wilson, R.A., The chemistry of flowers, fruits and spices: live vs. dead a new dimension in fragrance research, *Pure Appl. Chem.* 62, 1357, 1990.

Ervik, F. and Knudsen, J.T., Water lilies and scarabs: faithful partners for 100 million years?, *Biol. J. Linn. Soc.* 80, 539, 2003.

Giberneau, M., Barabé, D., Labat, D., Cerdan, P., and Dejean, A., Reproductive biology of *Montrichardia arborescens* (Araceae) in French Guiana, *J. Trop. Ecol.* 19, 1, 2003.

Ervik, F., Tollsten, L., and Knudsen, J.T., Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae), *Plant Syst. Evol.* 217, 279, 1999.

Kite, G., Reynolds, T., and Prance, G.T., Potential pollinator-attracting chemicals from *Victoria* (Nymphaeaceae), *Biochem. Syst. Ecol.* 19, 535, 1991.

Schultz, K., Kaiser, R., and Knudsen, J.T., Cyclanthone and derivatives, new natural products in the flower scent of *Cyclanthus bipartitus* Poit., *Flavour Fragr. J.* 14, 185, 1999.

Dieringer, G. and Espinosa, J.E.S., Reproductive ecology of *Magnolia schiedeana* (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico, *Bull. Torrey Bot. Club* 121, 154, 1994.

Azuma, H., Toyota, M., Asakawa, Y., Yamaoka, R., Garcia-Franco, J.G., Dieringer, G., Thien, L.B., and Kawano, S., Chemical divergence in floral scents in *Magnolia* and allied genera (Magnoliaceae), *Plant Species Biol.* 12, 69, 1997.

Dieringer, G., Cabrera, L., Lara, M., Loya, L., and Reyes-Castillo, P., Beetle pollination and floral thermogenicity in *Magnolia tamaulipana* (Magnoliaceae), *Int. J. Plant Sci.* 160, 64, 1999.

Larsson, M.C., Stensmyr, M.C., Bice, S., and Hansson, B.S., Attractiveness of fruit and flower odorants detected by olfactory receptor neurons in the fruit chafer *Pachnoda marginata*, *J. Chem. Ecol.* 29, 1253, 2003.

Jürgens, A., Weber, A.C., and Gottsberger, G., Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips, *Phytochemistry* 55, 551, 2000.

Thien, L.B., Heimermann, W.H., and Holman, R.T., Floral odors and quantitative taxonomy of *Magnolia* and *Liriodendron*, *Taxon* 24, 557, 1975.

Azuma, H., Thien, L.B., and Kawano, S., Molecular phylogeny of *Magnolia* (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents, *J. Plant Res.* 112, 291, 1999.

Azuma, H., Toyota, M., and Asakawa, Y., Intraspecific variation of floral scent chemistry in *Magnolia kobus* DC. (Magnoliaceae), *J. Plant Res.* 114, 411, 2001.

Bergström, G., Groth, I., Pellmyr, O., Endress, P.K., Thien, L.B., Hubener, A., and Francke, W., Chemical basis of a highly specific mutualism: chiral esters attract pollinating beetles in Eupomatiaceae, *Phytochemistry* 30, 3221, 1991.

Thien, L.B., Bernhardt, P., Gibbs, G.W., Pellmyr, O.M., Bergstrom, G., Groth, I., and McPherson, G., The pollination of *Zygogynum* (Winteraceae) by a moth, *Sabatinca* (Micropterigidae): an ancient association?, *Science* 227, 540, 1985.

Pellmyr, O., Thien, L.B., Bergström, G., and Groth, I., Pollination of New Caledonian Winteraceae: opportunistic shifts or parallel radiation with their pollinators?, *Plant Syst. Evol.* 173, 143, 1990.

Nogueira, P.C. de L., Bittrich, V., Shepard, G.J., Lopes, A.V., and Marsaioli, A.J., The ecological and taxonomic importance of flower volatiles of *Clusia* species (Guttiferae), *Phytochemistry* 56, 443, 2001.

Terry, I., Moore, C.J., Forster, P.I., Walter, G.H., Machin P.J., and Donaldson, J.S., Pollination ecology of the genus *Macrozamia*: cone volatiles and pollinator specificity, in *Proceedings of the 6th International Conference on Cycad Biology*, Pattaya,

Thailand, 2002, Lindstrom, A., Ed., Nong Nooch Tropical Botanical Garden, Thailand, 2004, p. 155.

Terry, I., Moore, C.J., Walter, G.H., Forster, P.I., Roemer, R.B., Donaldson, J.S., and Machin, P.J., Association of cone thermogenesis and volatiles with pollinator specificity in *Macrozamia* cycads, *Plant Syst. Evol.* 243, 233, 2004.

Pellmyr, O., Tang, W., Groth, I., Bergstrom, G., and Thien, L., Cycad cone and angiosperm floral volatiles: inferences for the evolution of insect pollination, *Biochem. Syst. Evol.* 19, 623, 1991.

Lajis, N.H., Hussein, M.Y., and Toia, R.F., Extraction and identification of the main compound present in *Elaeis guineensis* flower volatiles, *Pertanika* 8, 105, 1985.

Dufay, M., Anstett, M., and Hossaert-McKey, M.C., When leaves act like flowers: how dwarf palms attract their pollinators, *Ecol. Lett.* 6, 28, 2003.

Dufay, M., Hossaert-McKey, M.C., and Anstett, M., Temporal and sexual variation of leaf-produced pollinator-attracting odours in the dwarf palm, *Oecologia* 139, 392, 2004.

Caillard, J.-C., Meekijironenroj, A., Baudino, S., and Anstett, M.-C., Localization of production and emission of pollinators on whole leaves of *Chamaerops humilis* (Arecaceae), *Am. J. Bot.* 91, 1190, 2004.

Mawdsley, J.R., The importance of species of Dasytinae (Coleoptera: Melyridae) as pollinators in western North America, *Coleopt. Bull.* 57, 154, 2003.

Pellmyr, O., Groth, I., and Bergström, G., Comparative analysis of the floral odors of *Actaea spicata* and *A. erythrocarpa* (Ranunculaceae), *Nova Acta Reg. Soc. Sci. Ups. Series V:C* 3, 157, 1984.

Pellmyr, O., The pollination biology of *Actaea pachypoda* and *A. rubra* (including *A. erythrocarpa*) in northern Michigan and Finland, *Bull. Torrey Bot. Club* 112, 265, 1985.

Pellmyr, O., Bergström, G., and Groth, I., Floral fragrances in *Actaea*, using differential chromatograms to discern between floral and vegetative volatiles, *Phytochemistry* 26, 1603, 1987.

Dahl, Å.E., Wassgren, A.-B., and Bergström, G., Floral scents in *Hypecoum* sect. *Hypecoum* (Papaveraceae): chemical composition and relevance to taxonomy and mating system, *Biochem. Syst. Ecol.* 18, 157, 1990.

Kite, G.C., Hetterscheid, W.L.A., Lewis, M.J., Boyce, P.C., Ollerton, J., Cocklin, E., Diaz, A., and Simmonds, M.S.J., Inflorescence odours and pollinators of *Arum* and *Amorphophallus* (Araceae), in *Reproductive Biology in Systematics, Conservation and Economic Botany*, Owens, S.J. and Rudall, P.J., Eds., Royal Botanic Gardens, Kew, 1998, p. 295.

Lewis, G.P., Knudsen, J.T., Klitgaard, B.B., and Pennington, R.T., The floral scent of *Cyathostegia mathewsii* (Leguminosae, Papilionoideae) and preliminary observations on reproductive biology, *Biochem. Syst. Ecol.* 31, 951, 2003.

Rutherford, J., Male-biased response of garden chafer, *Phyllopertha horticola* L., to leaf alcohol and attraction of both sexes to floral plant volatiles, *Chemoecology* 14, 187, 2004.

Larson, B.M.H., Kevan, P.G., and Inouye, D.W., Flies and flowers: taxonomic diversity of anthophiles and pollinators, *Can. Entomol.* 133, 439, 2001.

Kearns, C.A., Anthophilous fly distribution across an elevation gradient, *Am. Midl. Nat.* 127, 172, 1992.

Eberling, H. and Olesen, J.M., The structure of a high latitude plant-flower visitor system: the dominance of flies, *Ecography* 22, 314, 1999.

Goldblatt, P. and Manning, J.C., The long-proboscid fly pollination system in southern Africa, *Ann. Mo. Bot. Gard.* 87, 146, 2000.

Szucsich, N.U. and Krenn, H.W., Flies and concealed nectar sources: morphological innovations in the proboscis of Bombyliidae (Diptera), *Acta Zool.* 83, 183, 2002.

Kugler, H., Über die optische Wirkung von Fliegenblumen auf Fliegen, *Dtsch. Bot. Gesell. Ber.* 69, 387, 1956.

Liebermann, A., Korrelation zwischen den antennalen Geruchsorganen und der Biologie der Musciden, *Z. Morph. Ökol. Tiere* 5, 1, 1925.

Erhardt, A., Pollination of the edelweiss, *Leontopodium alpinum*, *Bot. J. Linn. Soc.* 111, 229, 1993.

Nimitkeatkai, H., Doi, M., Sugihara, Y., Inamoto, K., Ueda, Y., and Imanishi, H., Characteristics of unpleasant odor emitted by *Gypsophila* inflorescences, *J. Jpn. Soc. Hort. Sci.* 74, 139, 2005.

Knudsen, J.T. and Ståhl, B., Floral odours in the Theophrastaceae, *Biochem. Syst. Ecol.* 22, 259, 1994.

Velišek, J., Kubelka, V., Pudil, F., Svobodová, Z., and Davídek, J., Volatile constituents of elder (*Sambucus nigra* L.) I. Flowers and leaves, *Lebensm. Wiss. u. Technol.*, 14, 309, 1981.

Dreyer, M.K. and Kirsch, T., Der Insektenkomplex des Mädesüß (*Filipendula ulmaria* L.), *Zool. Anz.* 218, 49, 1987.

Brunke, E.J., Hammerschmidt, F.J., and Schmaus, G., Flower scent of some traditional medicinal plants, in *Bioactive Volatile Compounds from Plants*, Teranishi, R., Buttery, R.G., and Sugisawa, H., Eds., American Chemical Society Symposium Series 525, American Chemical Society, Washington, DC, 1993, p. 282.

Knudsen, J.T., Floral scent chemistry in Geonomoid palms (Palmae: Geonomeae) and its importance in maintaining reproductive isolation, *Mem. N. Y. Bot. Gard.* 83, 141, 1999.

Erickson, B.J., Young, A.M., Strand, M.A., and Erickson, E.H., Jr., Pollination biology of *Theobroma* and *Herrania* (Sterculiaceae), *Insect Sci. Appl.* 8, 301, 1987.

Young, A.M., and Severson, D.W., Comparative analysis of steam distilled floral oils of cacao cultivars (*Theobroma cacao* L., Sterculiaceae) and attraction of flying insects: implications for a *Theobroma* pollination syndrome, *J. Chem. Ecol.* 20, 2687, 1994.

Young, A.M., Pollination biology of *Theobroma* and *Herrania* (Sterculiaceae). IV. Major volatile constituents of steam-distilled floral oils as field attractants to cacao-associated midges (Diptera: Cecidomyiidae and Ceratopogonidae) in Costa Rica, *Turrialba* 39, 454, 1989.

Nishida, R., Shelly, T.E., and Kaneshiro, K.Y., Acquisition of female-attracting fragrance by males of oriental fruit fly from a Hawaiian lei flower, *Fagraea berteriana*, *J. Chem. Ecol.* 23, 2275, 1997.

Metcalf, R.L., Chemical ecology of Dacinae fruit flies (Diptera: Tephritidae), *Ann. Entomol. Soc. Am.* 83, 1017, 1990.

Clarke, A.R., Balagawi, S., Clifford, B., Drew, R.A.I., Leblanc, L., Mararuai, A., McGuire, D., Putulan, D., Sar, S.A., and Tenakanai, D., Evidence of orchid visitation by *Bactrocera* species (Diptera: Tephritidae) in Papua New Guinea, *J. Trop. Ecol.* 18, 441, 2002.

Tan, K.-H. and Nishida, R., Mutual reproductive benefits between a wild orchid, *Bulbophyllum patens*, and *Bactrocera* fruit flies via a floral synomone, *J. Chem. Ecol.* 26, 533, 2000.

Nishida, R., Iwahashi, O., and Tan, K.-H., Accumulation of *Dendrobium superbum* (Orchidaceae) fragrance in the rectal glands by males of the melon fly, *Dacus cucurbitae*, *J. Chem. Ecol.* 19, 713, 1993.

Tan, K.-H., Nishida, R., and Toong, Y.C., Floral synomone of a wild orchid, *Bulbophyllum cheiri*, lures *Bactrocera* fruit flies for pollination, *J. Chem. Ecol.* 28, 1161, 2002.

Nishida, R., Tan, K.-H., Wee, S.L., Hee, A.K.W., and Toong, Y.C., Phenylpropanoids in the fragrance of the fruit fly orchid, *Bulbophyllum cheiri*, and their relationship to the pollinator, *Bactrocera papayae*, *Biochem. Syst. Ecol.* 32, 245, 2004.

Keng-Hong, T. and Nishida, R., Synomone or kairomone? – *Bulbophyllum apertum* flower releases raspberry ketone to attract *Bactrocera* fruit flies, *J. Chem. Ecol.* 31, 497, 2005.

Lewis, J.A., Moore, C.J., Fletcher, M.T., Drew, R.A.I., and Kitching, W., Volatile compounds from the flowers of *Spathiphyllum cannaefolium*, *Phytochemistry* 27, 2755, 1988.

Hadacek, F. and Weber, M., Club-shaped organs as additional osmophores within the *Sauromatum* inflorescence: odour analysis, ultrastructural changes and pollination aspects, *Plant Biol.* 4, 367, 2002.

Raguso, R.A., Floral organ and stage-specific odors of *Aristolochia gigantea*: the potential for scent-driven division of labor in trap-pollination, unpublished, 2005.

Kite, G.C. and Hettterscheid, W.L.A., Inflorescence odours of *Amorphophallus* and *Pseudodracontium* (Araceae), *Phytochemistry* 46, 71, 1997.

Smith, B.N. and Meeuse, B.J.D., Production of volatile amines and skatole at anthesis in some arum lily species, *Plant Physiol.* 41, 343, 1966.

Stránský, K. and Valterová, I., Release of volatiles during the flowering period of *Hydrosme rivieri* (Araceae), *Phytochemistry* 52, 1387, 1999.

Seymour, R.S., Giberneau, M., and Ito, K., Thermogenesis and respiration of inflorescences of the dead horse arum *Helicodiceros muscivorus*, a pseudothermoregulatory aroid associated with fly pollination, *Funct. Ecol.* 17, 886, 2003.

Kite, G.C., Inflorescence odour of the foul-smelling aroid *Helicodiceros muscivorus*, *Kew Bull.* 55, 237, 2000.

Stensmyr, M.C., Urru, I., Collu, I., Celander, M., Hansson, B.S., and Angioy, A.M., Rotting smell of dead-horse arum florets, *Nature* 420, 625, 2002.

Burger, B.V., Munro, J.M., and Visser, Z.H., Determination of plant volatiles 1: analysis of the insect-attracting allomone of the parasitic plant *Hydnora africana* using Grob-Habich activated charcoal traps, *J. High Resolut. Chromatogr. Commun.* 11, 496, 1988.

Kaiser, R., *The Scent of Orchids*, Hoffmann-La Roche, Basel, 1993.

Kite, G.C., The floral odour of *Arum maculatum*, *Biochem. Syst. Ecol.* 23, 343, 1995.

Skubatz, H., Kunkel, D.D., Howald, W.N., Trenkle, R., and Mookherjee, B., The *Sauromatum guttatum* appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insects, *New Phytol.* 134, 631, 1996.

Chen, J. and Meeuse, B.J.D., Production of free indole by some aroids, *Acta Bot. Neerl.* 20, 627, 1971.

Borg-Karlsson, A.-K., Englund, F.O., and Unelius, C.R., Dimethyl oligosulphides, major volatiles released from *Sauromatum guttatum* and *Phallus impudicus*, *Phytochemistry* 35, 321, 1994.

Borror, D.J., Triplehorn, C.A., and Johnson, N.F., *An Introduction to the Study of Insects*, 6th ed., Saunders, Fort Worth, TX, 1989.

Patt, J.M., French, J.C., Schal, C., Lech, J., and Hartman, T.G., The pollination biology of Tuckahoe, *Peltandra virginica* (Araceae), *Am. J. Bot.* 82, 1230, 1995.

Essig, F.B., Pollination in some New Guinea palms, *Principes* 17, 75, 1973.

Miyake, T. and Yafuso, M., Floral scents affect reproductive success in fly-pollinated *Alocasia odora* (Araceae), *Am. J. Bot.* 90, 370, 2003.

Azuma, H., Toyota, M., Asakawa, Y., Takaso, T., and Tobe, H., Floral scent chemistry of mangrove plants, *J. Plant Res.* 115, 47, 2002.

Goodrich, K.R., Zjhra, M.L., and Raguso, R.A., Sex and scentibility: protogyny and yeasty odor in flowers of pawpas (*Asimina triloba*: Annonaceae). *Int. J. Plant Sci.*, in press.

Gullan, P.J. and Cranston, P.S., *The Insects: An Outline of Entomology*, Chapman & Hall, London, 1994.

Talou, T., Delmas, M., and Gaset, A., Analysis of headspace volatiles from entire black truffle (*Tuber melanosporum*), *J. Sci. Food Agric.* 48, 57, 1989.

Mau, J.-L., Beelman, R.B., and Ziegler, G.R., Aroma and flavor components of cultivated mushrooms, in *Spices, Herbs and Edible Fungi*, Charalambous, G., Ed., Elsevier, Amsterdam, 1994, p. 657.

Rapior, S., Breheret, S., Talou, T., Pelissier, Y., Milhau, M., and Bessiere, J.-M., Volatile components of fresh *Agrocybe aegerita* and *Tricholoma sulfureum*. *Cryptogam. Mycol.* 19, 15, 1998.

Vogel, S. and Martens, J., A survey of the function of the lethal kettle traps of *Arisaema* (Araceae), with records of pollinating fungus gnats from Nepal, *Bot. J. Linn. Soc.* 133, 61, 2000.

Kirk, W.D.J., Feeding, in *Thrips as Crop Pests*, Lewis, T., Ed., Cab International, Wallington, U.K., 1997, p. 119.

Mound, L.A., Thysanoptera: diversity and interactions, *Annu. Rev. Entomol.* 50, 247, 2005.

Kirk, W.D.J., Effect of some floral scents on host finding by thrips (Insecta: Thysanoptera), *J. Chem. Ecol.* 11, 35, 1985.

Hooper, A.M., Bennison, J.A., Luszniak, M.C., Pickett, J.A., Pow, E.M., and Wadhams, L. J., *Verbena x hybrida* flower volatiles attractive to western flower thrips, *Frankliniella occidentalis*, *Pest. Sci.* 55, 633, 1999.

Imai, T., Maekawa, M., and Murai, T., Attractiveness of methyl anthranilate and its related compounds to the flower thrips, *Thrips hawaiiensis* (Morgan), *T. coloratus* Schmutz, *T. flavus* Schrank, and *Megalurothrips distalis* (Karny) (Thysanoptera: Thripidae), *Appl. Entomol. Zool.* 36, 475, 2001.

Galizia, C.G., Küttner, A., Joerges, J., and Menzel, R., Odour representation in honeybee olfactory glomeruli shows slow temporal dynamics: an optical recording study using a voltage-sensitive dye, *J. Insect Physiol.* 46, 877, 2000.

Wright, G.A., Skinner, B.D., and Smith, B.H., Ability of honeybee, *Apis mellifera*, to detect and discriminate odors of varieties of canol (*Brassica rapa* and *Brassica napus*) and snapdragon flowers (*Antirrhinum majus*), *J. Chem. Ecol.* 28, 721, 2002.

Paldi, N., Zilber, S., and Shafir, S., Associative olfactory learning of honeybees to differential rewards in multiple contexts—effect of odor component and mixture similarity, *J. Chem. Ecol.* 29, 2515, 2003.

Laloi, D. and Pham-Delègue, M.H., Bumble bees show asymmetrical discrimination between two odors in a classical conditioning procedure, *J. Insect Behav.* 17, 385, 2004.

Meagher, R.L., Trapping noctuid moths with synthetic floral volatile lures, *Entomol. Exp. Appl.* 103, 219, 2002.

Bergström, G., Birgersson, G., Groth, I., and Nilsson, L.A., Floral fragrance disparity between three taxa of lady's slipper *Cypripedium calceolus* (Orchidaceae), *Phytochemistry* 31, 2315, 1992.

Barkman, T.J., Beaman, J.H., and Gage, D.A., Floral fragrance variation in *Cypripedium*: implications for evolutionary and ecology studies, *Phytochemistry* 44, 875, 1997.

Olesen, J.M. and Knudsen, J.T., Scent profiles of flower colour morphs of *Corydalis cava* (Fumariaceae) in relation to foraging behaviour of bumblebee queens (*Bombus terrestris*), *Biochem. Syst. Ecol.* 22, 231, 1994.

Groth, I., Bergström, G., and Pellmyr, O., Floral fragrances in *Cimicifuga*: chemical polymorphism and incipient speciation in *Cimicifuga simplex*, *Biochem. Syst. Ecol.* 15, 441, 1987.

Irwin, R.E. and Dorsett, B., Volatile production by buds and corollas of two sympatric, confamilial plants, *Ipomopsis aggregata* and *Polemonium foliosissimum*, *J. Chem. Ecol.* 28, 565, 2002.

Bergström, G. and Bergström, J., Floral scents of *Bartsia alpina* (Scrophulariaceae): chemical composition and variation between individual plants, *Nord. J. Bot.* 9, 363, 1989.

Buttery, R.G., Kamm, J.A., and Ling, L.C., Volatile components of alfalfa flowers and pods, *J. Agric. Food Chem.* 30, 739, 1982.

Sutton, C.J., Keegans, S.J., Kirk, W.D.J., and Morgan, E.D., Floral volatiles of *Vicia faba*, *Phytochemistry* 31, 3427, 1992.

Griffiths, D.W., Robertson, G.W., Shepherd, T., and Ramsay, G., Epicuticular waxes and volatiles from faba bean (*Vicia faba*) flowers, *Phytochemistry* 52, 607, 1999.

Porter, A.E.A., Griffiths, D.W., Robertson, G.W., and Sexton, R., Floral volatiles of the sweet pea *Lathyrus odoratus*, *Phytochemistry* 51, 211, 1999.

Blackmer, J.L., Rodriguez-Saona, C., Byers, J.A., Shope, K.L., and Smith, J., Behavioral response of *Lygus hesperus* to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer, *J. Chem. Ecol.* 30, 1547, 2004.

Flamini, G., Cioni, P.L., and Morelli, I., Differences in the fragrances of pollen and different floral parts of male and female flowers of *Laurus nobilis*, *J. Agric. Food Chem.* 50, 4647, 2002.

Knudsen, J.T. and Mori, S.A., Floral scents and pollination in neotropical Lecythidaceae, *Biotropica* 28, 42, 1996.

Lindberg, A.B., Knudsen, J.T., and Olesen, J.M., Independence of floral morphology and scent chemistry as trait groups in a set of *Passiflora* species, in Totland, Ø., Armbruster, W.S., Fenster, C., Molau, U., Nilsson, L.A., Olesen, J.M., Ollerton, J., Philipp, M., and Ågren, J., Eds., *The Scandinavian Association for Pollination Ecology honours Knut Fægri*, The Norwegian Academy of Science and Letters, Oslo, 2000, p. 91.

Raguso, R.A. and Pichersky, E., Floral volatiles from *Clarkia breweri* and *C. concinna* (Onagraceae): recent evolution of floral scent and moth pollination, *Plant Syst. Evol.* 194, 55, 1995.

Dobson, H.E.M., Floral odor changes associated with male sterility in tomato plants (*Lycopersicon esculentum*, Solanaceae), unpublished data, 2005.

Gaskell, A.C., Conti, E., and Schiestl, F.P., Floral odor variation in two heterostylous species of *Primula*, *J. Chem. Ecol.* 31, 1223, 2005.

Knuth, P., *Handbuch der Blütenbiologie*, von Wilhelm Engelmann, Leipzig, 1898.

Buttery, R.G., Maddox, D.M., Light, D.M., and Ling, L.C., Volatile components of yellow starthistle, *J. Agric. Food Chem.* 34, 786, 1986.

Nilsson, L.A., The pollination ecology of *Dactylorhiza sambucina* (Orchidaceae), *Bot. Notiser* 133, 367, 1980.

Nilsson, L.A., Anthecology of *Orchis morio* (Orchidaceae) at its outpost in the north, *Nova Acta Reg. Soc. Sci. Ups. Series V:C* 3, 167, 1984.

Altenburger, R. and Matile, P., Further observations on rhythmic emission of fragrance in flowers, *Planta* 180, 194, 1990.

Knudsen, J.T. and Tollsten, L., Floral scent and intrafloral scent differentiation in *Moneses* and *Pyrola* (Pyrolaceae), *Plant Syst. Evol.* 177, 81, 1991.

Knudsen, J.T. and Olesen, J.M., Buzz-pollination and patterns in sexual traits in north European Pyrolaceae, *Am. J. Bot.* 80, 900, 1993.

Johnson, S.D., Steiner, K.E., and Kaiser, R., Deceptive pollination in two subspecies of *Disa spathulata* (Orchidaceae) differing in morphology and floral fragrance, *Plant Syst. Evol.* 255, 87, 2005.

Etievant, P.X., Azar, M., Pham-Delegue, M.H., and Masson, C.J., Isolation and identification of volatile constituents of sunflowers (*Helianthus annuus* L.), *J. Agric. Food Chem.* 32, 503, 1984.

Flamini, G., Cioni, P.L., and Morelli, I., Analysis of the essential oil of the aerial parts of *Viola etrusca* from Monte Labbro (south Tuscany, Italy) and *in vivo* analysis of flower volatiles using SPME, *Flavour Fragr. J.* 17, 147, 2002.

Selvi, F., Foggi, B., and Di Fazio, L., Patterns of phenotypic variation in *Viola etrusca* Erben (Violaceae), *Candollea* 50, 309, 1995.

Flach, A., Dondon, R.C., Singer, R.B., Koehler, S., Amaral, M.C.E., and Marsaioli, A., The chemistry of pollination in selected Brazilian Maxillariinae orchids: floral rewards and fragrance, *J. Chem. Ecol.* 30, 1045, 2004.

Schlumpberger, B.O., Jux, A., Kunert, M., Boland, W., and Wittmann, D., Musty-earthy scent in cactus flowers: characteristics of floral scent production in dehydrogeosmin-producing cacti, *Int. J. Plant Sci.* 165, 1007, 2004.

Andersen, J.F., Composition of the floral odor of *Cucurbita maxima* Duchesne (Cucurbitaceae), *J. Agric. Food Chem.* 35, 60, 1987.

Stuurman, J., Hoballah, M.-E., Broger, L., Moore, J., Basten, C., and Kuhlemeier, C., Dissection of floral pollination syndromes in *Petunia*, *Genetics* 168, 1585, 2004.

Buttery, R.G., Kamm, J.A., and Ling, L.C., Volatile components of red clover leaves, flowers, and seed pods: possible insect attractants, *J. Agric. Food Chem.* 32, 254, 1984.

Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C., and Wood, K., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, *Plant Cell* 12, 949, 2000.

Dobson, H.E.M., Bergström, G., and Groth, I., Differences in fragrance chemistry between flower parts of *Rosa rugosa* Thunb. (Rosaceae), *Isr. J. Bot.* 39, 143, 1990.

Flament, I., Debonneville, C., and Furrer, A., Volatile constituents of roses, in *Bioactive Volatile Compounds from Plants*, Teranishi, R., Buttery, R.G., and Sugisawa, H., Eds., American Chemical Society Symposium Series 525, American Chemical Society, Washington, DC, 1993, p. 269.

Antonelli, A., Fabbri, C., Giorgioni, M.E., and Bazzocchi, R., Characterization of 24 old garden roses from their volatile compositions, *J. Agric. Food Chem.* 45, 4435, 1997.

Helsper, J.P.F.G., Davies, J.A., Bouwmeester, H.J., Krol, A.F., and van Kampen, M.H., Circadian rhythmicity in emission of volatile compounds by flowers of *Rosa hybrida* L. cv. Honesty, *Planta* 207, 88, 1998.

Shalit, M., Shafir, S., Larkov, O., Bar, E., Kaslassi, D., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Ravid, U., and Lewinsohn, E., Volatile compounds emitted by rose cultivars: fragrance perception by man and honeybees, *Isr. J. Plant Sci.* 52, 245, 2004.

Buchbauer, G., Jirovetz, L., Wasicky, M., and Nikforov, A., Headspace and essential oil analysis of apple flowers, *J. Agric. Food Chem.* 41, 116, 1993.

Ashman, T.-L., Bradburn, M., Cole, D.H., Blaney, B.H., and Raguso, R.A., The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant, *Ecology* 86, 2099, 2005.

Binder, R.G., Turner, C.E., and Flath, R.A., Volatile components of purple starthistle, *J. Agric. Food Chem.* 38, 1053, 1990.

Tatsuka, K., Suekane, S., Sakai, Y., and Sumitani, H., Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling, *J. Agric. Food Chem.* 38, 2176, 1990.

Samadi-Maybodi, A., Shariat, M.R., Zarei, M., Rezai, M.B., Headspace analysis of the male and female flowers of kiwifruit grown in Iran, *J. Essent. Oil Res.* 14, 414, 2002.

Dobson, H.E.M., Arroyo, J., Bergström, G., and Groth, I., Interspecific variation in floral fragrances within the genus *Narcissus* (Amaryllidaceae), *Biochem. Syst. Ecol.* 25, 685, 1997.

Dobson, H.E.M., Arroyo, J., and Kephart, S.R., Pollination biology of *Narcissus assoanus* and *N. cuatrecasasii* in southern Spain, unpublished data, 2001.

Dafni, A., Bernhardt, P., Shmida, A., Ivri, Y., Greenbaum, S., O'Toole, C.H., and Losito, L., Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region, *Isr. J. Bot.* 39, 81, 1990.

Joulain, D., Study of the fragrance given off by certain springtime flowers, in *Progress in Essential Oil Research*, Brunke, E.-J., Ed., Walter de Gruyter, Berlin, 1986, p. 57.

Williams, N.H. and Whitten, W.M., Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade, *Biol. Bull.* 164, 355, 1983.

Gerlach, G. and Schill, R., Composition of orchid scents attracting euglossine bees, *Bot. Acta* 104, 379, 1991.

Schiestl, F.P. and Roubik, D.W., Odor compound detection in male euglossine bees, *J. Chem. Ecol.* 29, 253, 2003.

Hills, H.G., Fragrance cycling in *Stanhopea pulla* (Orchidaceae, Stanhopeinae) and identification of trans-limonene oxide as a major fragrance component, *Lindleyana* 4, 61, 1989.

Sazima, M., Vogel, S., Cocucci, A.A., and Hausner, G., The perfume flowers of *Cyphomandra* (Solanaceae): pollination by euglossine bees, bellows mechanism, osmophores, and volatiles, *Plant Syst. Evol.* 187, 51, 1993.

Nogueira, P.C. de L., Marsaioli, A.J., Emaral, M. do C.E., and Bitrich, V., The fragrant floral oils of *Tovomita* species, *Phytochemistry* 49, 1009, 1998.

Armbruster, W.S., Keller, S., Matsuki, M., and Clausen, T.P., Pollination of *Dalechampia magnoliifolia* (Euphorbiaceae) by male euglossine bees, *Am. J. Bot.* 76, 1279, 1989.

Whitten, M.W., Hills, H.G., and Williams, N.H., Occurrence of ipsdienol in floral fragrances, *Phytochemistry* 27, 2759, 1988.

Knudsen, J.T., Andersson, S., and Bergman, P., Floral scent attraction in *Geonoma macrostachys*, an understorey palm of the Amazonian rain forest, *Oikos* 85, 409, 1999.

Knudsen, J.T., Variation in floral scent composition within and between populations of *Geonoma macrostachys* (Arecaceae) in the western amazon, *Am. J. Bot.* 89, 1772, 2002.

Johnson, S.D., Specialized pollination by spider-hunting wasps in the African orchid *Disa sankeyi*, *Plant Syst. Evol.* 251, 153, 2005.

Anstett, M.C., Hossaert-McKey, M., and Kjellberg, F., Figs and fig pollinators: evolutionary conflicts in a coevolved mutualism, *Trends Ecol. Evol.* 12, 94, 1997.

Grison, L., Edwards, A.A., and Hossaert-McKey, M., Interspecies variation in floral fragrances emitted by tropical *Ficus* species, *Phytochemistry* 52, 1293, 1999.

Weiblen, G.D., How to be a fig wasp, *Annu. Rev. Entomol.* 47, 299, 2002.

Grison-Pigé, L., Bessière, J.-M., and Hossaert-McKey, M., Specific attraction of figpollinating wasps: role of volatile compounds released by tropical figs, *J. Chem. Ecol.* 28, 283, 2002.

Barker, N.P., Evidence of a volatile attractant in *Ficus ingens* (Moraceae), *Bothalia* 15, 607, 1985.

Ware, A.B., Kaye, P.T., Compton, S.G., and van Noort, S., Fig volatiles: their role in attracting pollinators and maintaining pollinator specificity, *Plant Syst. Evol.* 186, 147, 1993.

Giberneau, M., Buser, H.R., Frey, J.E., and Hossaert-McKey, M., Volatile compounds from extracts of figs of *Ficus carica*, *Phytochemistry* 46, 241, 1997.

Song, Q.S., Yang, D.R., Zhang, G.M., and Yang, C.R., Volatiles from *Ficus hispida* and their attractiveness to fig wasps, *J. Chem. Ecol.* 27, 1929, 2001.

Grison-Pigé, L., Bessière, J.-M., Turlings, C.J., Kjellberg, F., Roy, J., and Hossaert-McKey, M., Limited intersex mimicry of floral odour in *Ficus carica*, *Funct. Ecol.* 15, 551, 2001.

Grison-Pigé, L., Hossaert-McKey, M., Greeff, J.M., and Bessière, J.-M., Fig volatile compounds: a first comparative study, *Phytochemistry* 61, 61, 2002.

Paulus, H.F. and Gack, C., Pollinators as prepollinating isolation factors: evolution and speciation in *Ophrys* (Orchidaceae), *Isr. J. Bot.* 39, 43, 1990.

Schiestl, F.P., Peakall, R., and Mant, J.G., Chemical communication in the sexually deceptive orchid genus *Cryptostelis*, *Bot. J. Linn. Soc.* 144, 199, 2004.

Steiner, K.E., Whitehead, V.B., and Johnson, S.D., Floral pollinator divergence in two sexually deceptive South African orchids, *Am. J. Bot.* 81, 185, 1994.

Schiestl, F.P. and Marion-Poll, F., Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography, in *Molecular Methods of Plant Analysis*, vol. 21, *Analysis of Taste and Aroma*, Jackson, J.F., Linskens, H.F., and Inman, R., Eds., Springer, Berlin, 2002, p. 173.

Schiestl, F.P. and Ayasse, M., Do changes in floral odor cause speciation in sexually deceptive orchids?, *Plant Syst. Evol.* 234, 111, 2002.

Mant, J.G., Schiestl, F.P., Peakall, R., and Weston, P.H., A phylogenetic study of pollinator conservatism among sexually deceptive orchids, *Evolution* 56, 888, 2002.

Ayasse, M., Schiestl, F.P., Paulus, H.F., Löfstedt, C., Hansson, B., Ibarra, F., and Francke, W., Evolution of reproductive strategies in the sexually deceptive orchid *Ophrys sphecodes*: how does flower-specific variation of odor signals influence reproductive success?, *Evolution* 54, 1995, 2000.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F., and Francke, W., Orchid pollination by sexual swindle, *Nature* 399, 421, 1999.

Mant, J., Brandli, C., Vereecken, N.J., Schulz, C.M., Francke, W., Schiestl, F.P., Cuticular hydrocarbons as sex pheromone of the bee *Colletes cunicularius* and the key to its

mimicry by the sexually deceptive orchid, *Ophrys exaltata*, *J. Chem. Ecol.*, 31, 1765, 2005.

Scoble, M.J., *The Lepidoptera: Form, Function and Diversity*, Oxford University Press, Oxford, 1992, 192.

Jürgens, A. and Dötterl, S., Chemical composition of anther volatiles in Ranunculaceae: genera-specific profiles in *Anemone*, *Aquilegia*, *Caltha*, *Pulsatilla*, *Ranunculus*, and *Trollius* species, *Am. J. Bot.* 91, 1969, 2004.

Pellmyr, O., Yuccas, yucca moths, and coevolution: a review, *Ann. Mo. Bot. Gard.* 90, 35, 2003.

Svensson, G.P., Hickman, M.O., Jr., Bartram, S., Boland, W., Pellmyr, O., and Raguso, R.A., Chemistry and geographic variation of floral scent in *Yucca filamentosa* (Agavaceae). *Am. J. Bot.* 92, 1624, 2005.

Erhardt, A., Flower preferences, nectar preferences and pollination effect of Lepidoptera, *Adv. Ecol.* 1, 239, 1991.

Raguso, R.A. and Willis, M.A., Hawkmoth pollination in Arizona's Sonoran Desert: behavioral responses to floral traits, in *Butterflies: Ecology and Evolution Taking Flight*, Boggs, C.L., Watt, W.B., and Ehrlich, P.R., Eds., 2003, p. 43.

Erhardt, A., Pollination of *Dianthus gratianopolitanus* (Caryophyllaceae), *Plant Syst. Evol.* 170, 125, 1990.

Erhardt, A., Unpublished data, 1993.

Cantelo, W.W. and Jacobson, M., Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps, *Environ. Entomol.* 8, 444, 1978.

Huber, F.K., Kaiser, R., Sauter, W., and Schiestl, F.P., Floral scent emission and specific pollinator attraction in two species of *Gymnadenia* (Orchidaceae), *Oecologia* 142, 564, 2005.

Corbet, S.A., Butterfly nectaring flowers: butterfly morphology and flower form, *Entomol. Exp. Appl.* 96, 289, 2000.

Honda, K., Ômura, H., and Hayashi, N., Identification of floral volatiles from *Ligustrum japonicum* that stimulate flower-visiting by cabbage butterfly, *Pieris rapae*, *J. Chem. Ecol.* 24, 2167, 1998.

Ômura, H., Honda, K., and Hayashi, N., Chemical and chromatic bases for preferential visiting by the cabbage butterfly, *Pieris rapae*, to rape flowers, *J. Chem. Ecol.* 25, 1895, 1999.

Ômura, H., Honda, K., Nakagawa, A., and Hayashi, N., The role of floral scent of the cherry tree, *Prunus yedoensis*, in the foraging behavior of *Luehdorfia japonica* (Lepidoptera: Papilionidae), *Appl. Entomol. Zool.* 34, 309, 1999.

Ômura, H. and Honda, K., Priority of color over scent during flower visitation by adult *Vanessa indica* butterflies, *Oecologia* 142, 588, 2005.

Erhardt, A. and Jäaggi, B., From pollination by Lepidoptera to selfing: the case of *Dianthus glacialis* (Caryophyllaceae), *Plant Syst. Evol.* 195, 67, 1995.

Naumann, C.M., Ockenfels, P., Schmitz, J., Schmidt, F., and Francke, W., Reactions of Zygaea moths to volatile compounds of *Knautia arvensis* (Lepidoptera: Zygaeidae), *Entomol. Gener.* 15, 255, 1991.

Andersson, S., Antennal responses to floral scent in the butterflies *Inachis io*, *Aglais urticae* (Nymphalidae), and *Gonepteryx rhamni* (Pieridae), *Chemoecology* 13, 13, 2003.

Andersson, S. and Dobson, H.E.M., Antennal responses to floral scents in the butterfly *Heliconius melpomene*, *J. Chem. Ecol.* 29, 2319, 2003.

Pellmyr, O., Three pollination morphs in *Cimicifuga simplex*; incipient speciation due to inferiority in competition, *Oecologia* 68, 304, 1986.

Andersson, S., Foraging responses in the butterflies *Inachis io*, *Aglais urticae* (Nymphalidae), and *Gonepteryx rhamni* (Pieridae) to floral scents, *Chemoecology* 13, 1, 2003.

Andersson, S. and Dobson, H.E.M., Behavioral foraging responses by the butterfly *Heliconius melpomene* to *Lantana camara* floral scent, *J. Chem. Ecol.* 29, 2303, 2003.

Ômura, H., Honda, K., and Hayashi, N., Floral scent of *Osmanthus fragrans* discourages foraging behavior of cabbage butterfly, *Pieris rapae*, *J. Chem. Ecol.* 26, 655, 2000.

Haber, W.A. and Frankie, G.W., A tropical hawkmoth community: Costa Rican dry forest Sphingidae, *Biotropica* 21, 155, 1989.

Kaiser, R.A.J., On the scent of orchids, in *Bioactive Volatile Compounds from Plants*, Teranishi, R., Butterly, R.G., and Sagisawa, H., Eds., American Chemical Society Symposium Series 525, American Chemical Society, Washington, DC, 1993, p. 240.

Shaver, T.N., Lindgren, P.D., and Marshall, H.F., Nighttime variation in volatile content of flowers of the night blooming plant *Gaura drummondii*, *J. Chem. Ecol.* 23, 2673, 1997.

Christensen, L.P., Jakobsen, H.B., Kristiansen, K., and Møller, J., Volatiles emitted from flowers of γ -radiated and nonradiated *Jasminum polyanthum* Franch. in situ, *J. Agric. Food Chem.* 45, 2199, 1997.

Nilsson, L.A., Processes of isolation and introgressive interplay between *Platanthera bifolia* (L.) Rich and *P. chlorantha* (Custer) Reichb. (Orchidaceae), *Bot. J. Linn. Soc.* 87, 325, 1983.

Nilsson, L.A., Characteristics and distribution of intermediates between *Platanthera bifolia* and *P. chlorantha* (Orchidaceae) in the nordic countries, *Nord. J. Bot.* 5, 407, 1985.

Tollsten, L. and Bergström, G., Fragrance chemotypes of *Platanthera* (Orchidaceae): the result of adaptation to pollinating moths?, *Nord. J. Bot.* 13, 607, 1993.

Cunningham, J.P., Moore, C.J., Zalucki, M.P., and West, S.A., Learning, odour preference and flower foraging in moths, *J. Exp. Biol.* 207, 87, 2004.

Heath, R.R., Landolt, P.J., Dueben, B., and Lenczewski, B., Identification of floral compounds of night-blooming Jessamine attractive to cabbage looper moths, *Environ. Entomol.* 21, 854, 1992.

Haynes, K.F., Zhao, J.Z., and Latif, A., Identification of floral compounds from *Abelia grandiflora* that stimulate upwind flight in cabbage looper moths, *J. Chem. Ecol.* 17, 637, 1991.

Landolt, P.J. and Smithhisler, C.L., Characterization of the floral odor of Oregongrape: possible feeding attractants for moths, *Northwest Sci.* 77, 81, 2003.

Creighton, C.S., McFadden, T.L., and Cuthbert, E.R., Supplementary data on phenylacetaldehyde: an attractant for Lepidoptera, *J. Econ. Entomol.* 66, 114, 1973.

Landolt, P.J., Adams, T., Reed, H.C., and Zack, R.S., Trapping alfalfa looper moths (Lepidoptera: Noctuidae) with single and double component floral chemical lures, *Environ. Entomol.* 30, 667, 2001.

Meagher, R.L., Trapping fall armyworm (Lepidoptera: Noctuidae) adults in traps baited with pheromone and a synthetic floral volatile compound, *Fla. Entomol.* 84, 288, 2001.

Meagher, R.L., Collection of soybean looper and other noctuids in phenylacetaldehyde-baited field traps, *Fla. Entomol.* 84, 154, 2001.

Deng, J.-Y., Wei, H.-Y., Huang, Y.-P., and Du, J.-W., Enhancement of attraction to sex pheromones of *Spodoptera exigua* by volatile compounds produced by host plants, *J. Chem. Ecol.* 30, 2037, 2004.

Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weißbecker, B., and Schütz, S., Nursery pollination by a moth in *Silene latifolia*: the role of odours in eliciting antennal and behavioural responses, *New Phytol* 2005, doi:10.1111/j.1469-8137.2005.01509.

Dötterl, S., Wolfe, L.M., and Jürgens, A., Qualitative and quantitative analyses of flower scent in *Silene latifolia*, *Phytochemistry* 66, 195, 2005.

Plepys, D., Ibarra, F., Francke, W., and Lofstedt, C., Odour-mediated nectar foraging in the silver Y moth, *Autographa gamma* (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles, *Oikos* 99, 75, 2002.

Plepys, D., Ibarra, F., and Lofstedt, C., Volatiles from flowers of *Platanthera bifolia* (Orchidaceae) attractive to the silver Y moth, *Autographa gamma* (Lepidoptera: Noctuidae), *Oikos* 99, 69, 2002.

Gabel, B., Thiery, D., Suchy, V., Marion-Poll, F., Hradsky, P., and Farkas, P., Floral volatiles of *Tanacetum vulgare* L. attractive to *Lobesia botrana* Den. et Schiff. females, *J. Chem. Ecol.* 18, 693, 1992.

Pophof, B., Stange, G., and Abrell, L., Volatile organic compounds as signals in a plant-herbivore system: electrophysiological responses in olfactory sensilla of the moth *Cactoblastis cactorum*, *Chem. Senses* 30, 51, 2005.

Grant, V., The systematics and geographical distribution of hawkmoth flowers in the temperate North America flora, *Bot. Gaz.* 144, 439, 1983.

Kaiser, R. and Tollsten, L., An introduction to the scent of cacti, *Flavour Fragr. J.* 10, 153, 1995.

Kite, G.C. and Leon, C., Volatile compounds emitted from flowers and leaves of *Brugmansia x candida* (Solanaceae), *Phytochemistry* 40, 1093, 1995.

Miyake, T., Yamaoka, R., and Yahara, T., Floral scents of hawkmoth-pollinated flowers in Japan, *J. Plant Res.* 111, 199, 1998.

Manning, J.C. and Snijman, D., Hawkmoth-pollination in *Crinum variabile* (Amaryllidaceae) and the biogeography of sphingophily in southern African Amaryllidaceae, *S. Afr. J. Bot.* 68, 212, 2002.

Kawano, S., Odaki, M., Yamaoka, R., Oda-Tanabe, M., Takeuchi, M., and Kawano, N., Pollination biology of *Oenothera* (Onagraceae): the interplay between floral UVabsorbancy patterns and floral volatiles as signals to nocturnal insects, *Plant Species Biol.* 10, 31, 1995.

Luyt, R. and Johnson, S.D., Hawkmoth pollination of the African epiphytic orchid *Mystacidium venosum*, with special reference to flower and pollen longevity, *Plant Syst. Evol.* 228, 49, 2001.

Johnson, S.D., Hawkmoth pollination and hybridization in *Delphinium leroyi* (Ranunculaceae) on the Nyika Plateau, Malawi, *Nord. J. Bot.* 21, 599, 2001.

Matile, P. and Altenburger, R., Rhythms of fragrance emission in flowers, *Planta* 174, 242, 1988.

Pott, M.B., Pichersky, E., and Piechulla, B., Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of *Staphanotis floribunda*, *J. Plant Physiol.* 159, 925, 2002.

Raguso, R.A., Light, D.M., and Pichersky, E., Electroantennogram responses of *Hyles lineata* (Sphingidae: Lepidoptera) to volatile compounds from *Clarkia breweri* (Onagraceae) and other moth-pollinated flowers, *J. Chem. Ecol.* 22, 1735, 1996.

Raguso, R.A. and Light, D.M., Electroantennogram responses of male *Sphinx perelegans* hawkmoths to floral and “green-leaf volatiles,” *Entomol. Exp. Appl.* 86, 287, 1998.

Fraser, A.M., Mechaber, W.L., and Hildebrand, J.G., Electroantennographic and behavioral responses of the sphinx moth *Manduca sexta* to host plant headspace volatiles, *J. Chem. Ecol.* 29, 1813, 2003.

Schwilch, R., Mantovani, R., Spina, F., and Jenni, L., Nectar consumption of warblers after long-distance flights during spring migration, *Ibis* 143, 24, 2001.

Bruneau, A., Evolution and homology of bird pollination syndromes in *Erythrina* (Leguminosae), *Am. J. Bot.* 84, 54, 1997.

Martinez del Rio, C., Baker, H.G., and Baker, I., Ecological and evolutionary implications of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp, *Experientia* 48, 544, 1992.

Evans, H.E. and Heiser, J.B., What’s inside: anatomy and physiology, in *Handbook of Bird Biology*, 2nd ed., Podulka, S., Rohybaugh, R.W., and Bonney, R., Eds., Princeton University Press, Princeton, NJ, 2004.

Hurly, T.A. and Healy, S.D., Memory for flowers in rufous hummingbirds: location or local visual cues?, *Anim. Behav.* 51, 1149, 1996.

Meléndez-Ackerman, E.J. and Campbell, D.R., Adaptive significance of flower color and inter-trait correlations in an *Ipomopsis* hybrid zone, *Evolution* 52, 1293, 1998.

Varassin, I.G., Trigo, J.R., and Sazima, M., The role of nectar production, flower pigments and odour in the pollination of four species of *Passiflora* (Passifloraceae) in south-eastern Brazil, *Bot. J. Linn. Soc.* 136, 139, 2001.

Sazima, M., Sazima, I., and Buzato, S., Nectar by day and night: *Siphocampylus sulfureus* (Lobeliaceae) pollinated by hummingbirds and bats, *Plant Syst. Evol.* 191, 237, 1994.

Sahley, C.T., Bat and hummingbird pollination of an autotetraploid columnar cactus, *Weberbauerocereus weberbaueri* (Cactaceae), *Am. J. Bot.* 83, 1329, 1996.

Aigner, P.A. and Scott, P.E., Use and pollination of a hawkmoth plant, *Nicotiana attenuata*, by migrant hummingbirds, *Southwest. Nat.* 47, 1, 2002.

Wolff, D., Braun, M., and Liede, S., Nocturnal versus diurnal pollination success in *Isertia laevis* (Rubiaceae): a sphingophilous plant visited by hummingbirds, *Plant Biol.* 5, 71, 2003.

Winter, Y. and von Helversen, O., Bats as pollinators: foraging energetics and floral adaptations, in *Cognitive Ecology and Pollination*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, 2001.

Wyatt, R., Pollinator-plant interactions in the evolution of breeding systems, in *Pollination Biology*, Real, L., Ed., Academic Press, Orlando, FL, 1983, p. 51.

Bestmann, H.J., Winkler, L., and von Helversen, O., Headspace analysis of flower scent constituents of bat-pollinated plants, *Phytochemistry* 46, 1169, 1997.

von Helversen, O., Winkler, L., and Bestmann, H.J., Sulfur-containing “perfumes” attract flower-visiting bats, *J. Comp. Physiol. A* 186, 143, 2000.

Pettersson, S. and Knudsen, J.T., Floral scent and nectar production in *Parkia biglobosa* Jacq. (Leguminosae: Mimosoideae), *Bot. J. Linn. Soc.* 135, 97, 2001.

Pettersson, S., Ervik, F., and Knudsen, J.T., Floral scent of bat-pollinated species: West Africa vs. the New World, *Biol. J. Linn. Soc.* 82, 168, 2004.

Ecroyd, C.E., Franich, R.A., Kroese, H.W., and Steward, D., Volatile constituents of *Dactylanthus taylorii* flower nectar in relation to flower pollination and browsing by animals, *Phytochemistry* 40, 1387, 1995.

Fleming, T.H., Plant-visiting bats, *Am. Sci.* 81, 460, 1993.

Winter, Y., López, J., and von Helversen, O., Ultraviolet vision in a bat, *Nature* 425, 612, 2003.

Kress, W.J., Bat pollination of an Old World *Heliconia*, *Biotropica* 17, 302, 1985.

Knudsen, J.T. and Klitgaard, B.B., Floral scent and pollination in *Browneopsis disepala* (Leguminosae: Caesalpinoideae) in western Ecuador, *Brittonia* 50, 174, 1998.

Arizaga, S., Ezcurra, E., Peters, E., de Arellano, F.R., and Vega, E., Pollination ecology of *Agave macroacantha* (Agavaceae) in a Mexican tropical desert. I. Floral biology and pollination mechanisms, *Am. J. Bot.* 87, 1004, 2000.

Slauson, L.A., Pollination biology of two chiropterophilous agaves in Arizona, *Am. J. Bot.* 87, 825, 2000.

Fleming, T.H., Sahley, C.T., Holland, J.N., Nason, J.D., and Hamrick, J.L., Sonoran desert columnar cacti and the evolution of generalized pollination systems, *Ecol. Monogr.* 71, 511, 2001.

Tschapka, M. and von Helversen, O., Pollinators of syntopic *Marcgravia* species in Costa Rican lowland rain forest: bats and opossums, *Plant Biol.* 1, 382, 1999.

Johnson, S.D. and Steiner, K.E., Specialized pollination systems in southern Africa, *S. Afr. J. Sci.* 99, 345, 2003.

Hargreaves, A., Johnson, S.D., and Nol, E., Do floral syndromes predict specialization in plant pollination systems? An experimental test in an “ornithophilous” African *Protea*, *Oecologia* 140, 295, 2004.

Ramírez, N., Floral specialization and pollination: a quantitative analysis and comparison of the Leppik and the Faegri and van der Pijl classification systems, *Taxon* 52, 687, 2003.

Ollerton, J. and Watts, S., Phenotypic space and floral typology: towards an objective assessment of pollination syndromes. *Norske Vidensk.-Akad. I. Mat. Naturvid. Kl. Skrif.*, Ny Ser. 39, 149, 2000.

Goldsmith, K.M., and Goldsmith, T.H., Sense of smell in the black-chinned hummingbird, *Condor* 84, 237, 1982.

Bergström, G. and Lundgren, L., Androconial secretions of three species of butterflies of the genus *Pieris* (Lep., Pieridae). *Zool Suppl* 1, 67, 1973.

Honda, K., Odor of a papilionid butterfly: odoriferous substances emitted by *Atrophaneura alcinous* (Lepidoptera: Papilionidae), *J. Chem. Ecol.* 6, 867, 1980.

Schulz, S. and Francke, W., Volatile compounds from androconial organs of Danaine and Ithomiine butterflies, *Z. Naturforsch.* 43c, 99, 1988.

Boppré, M., Chemically mediated interactions between butterflies, in *The Biology of Butterflies*, Vane-Wright, R.I. and Ackery, P.R., Eds., Princeton University Press, Princeton, NJ, 1989, p. 259.

Schulz, S., Boppré, M., and Vane-Wright, R.I., Specific mixtures of secretions from male scent organs of African milkweed butterflies (Danainae), *Philos. Trans. R. Soc. Lond. B* 342, 161, 1993.

Nishida, R., Schulz, S., Kim, C.S., Fukami, H., Kuwahara, Y., Honda, K., and Hayashi, N., Male sex pheromone of a giant danaine butterfly, *Idea leuconoe*, *J. Chem. Ecol.* 22, 949, 1996.

Shreeve, T.G., Adult behaviour, in *The Ecology of Butterflies in Britain*, Dennis, R.L.H., Ed., Oxford Science Publications, Oxford, 1992, p. 22.

Gilbert, L.E., Postmating female odor in *Heliconius* butterflies: a male-contributed antiaphrodisiac?, *Science* 193, 419, 1976.

Forsberg, J., and Wiklund, C., Mating in the afternoon: time-saving in courtship and remating by females of a polyandrous butterfly *Pieris napi* L., *Behav. Ecol. Sociobiol.* 25, 349, 1989.

Den Otter, C.J., Behan, M., and Maes, F.W., Single cell responses in female *Pieris brassicae* (Lepidoptera: Pieridae) to plant volatiles and conspecific egg odours, *J. Insect Physiol.* 26, 465, 1980.

Spencer, K.C., Chemical mediation of coevolution in the Passiflora-*Heliconius* interaction, in *Chemical Mediation of Coevolution*, Spencer, K.C., Ed., Academic Press, San Diego, 1988, p. 167.

Feeny, P., Städler, E., Åhman, I., and Carter, M., Effects of plant odor on oviposition by the black swallowtail butterfly, *Papilio polyxenes* (Lepidoptera: Papilionidae), *J. Insect Behav.* 2, 803, 1989.

Topazzini, A., Mazza, M., and Pelosi, P., Electroantennogram responses of five lepidoptera species to 26 general odourants, *J. Insect Physiol.* 36, 619, 1990.

van Loon, J.J.A., Frentz, W.H., and van Eeuwijk, F.A., Electroantennogram responses to plant volatiles in two species of *Pieris* butterflies, *Entomol. Exp. Appl.* 62, 253, 1992.

Baur, R., Feeny, P., and Staedler, E., Oviposition stimulants for the black swallowtail butterfly: identification of electrophysiologically active compounds in carrot volatiles, *J. Chem. Ecol.* 19, 919, 1993.

Huang, X., Renwick, J.A.A., and Sachdev-Gupta, K., Oviposition stimulants in *Barbarea vulgaris* for *Pieris rapae* and *P. napi oleracea*: isolation, identification and differential activity, *J. Chem. Ecol.* 20, 423, 1994.

Chew, F.S. and Renwick, J.A.A., Host plant choice in *Pieris* butterflies, in *Chemical Ecology of Insects*, vol. 2, Cardé, R.T. and Bell, W.J., Eds., Chapman & Hall, New York, 1995, p. 214.

Baur, R. and Feeny, P., Comparative electrophysiological analysis of plant odor perception in females of three *Papilio* species, *Chemoecology* 5/6, 26, 1995.

Honda, K., Hayashi, N., Abe, F., and Yamauchi, T., Pyrrolizidine alkaloids mediate host-plant recognition by ovipositing females of an Old World danaid butterfly, *Idea leuconoe*, *J. Chem. Ecol.* 23, 1703, 1997.

Brower, L.P., Chemical defence in butterflies, in *The Biology of Butterflies*, Vane-Wright, R.I. and Ackery, P.R., Eds., Princeton University Press, Princeton, NJ, 1989, p. 109.

McFarlane, J.E., Nutrition and digestive organs, in *Fundamentals of Insect Physiology*, Blum, M.S., Ed., John Wiley & Sons, New York, 1985, p. 59.

Gilbert, L.E., Pollen feeding and reproductive biology of *Heliconius* butterflies, *Proc. Natl. Acad. Sci. USA* 69, 1403, 1972.

Boggs, C.L., Smiley, J.T., and Gilbert, L.E., Patterns of pollen exploitation by *Heliconius* butterflies, *Oecologia* 48, 284, 1981.

Tooker, J.F., Reagel, P.F., and Hanks, L.M., Nectar sources of day-flying Lepidoptera of central Illinois, *Ann. Entomol. Soc. Am.* 95, 84, 2002.

Lack, A.J., The ecology of flowers of chalk grassland and their insect pollinators, *J. Ecol.* 70, 773, 1982.

Proctor, M., Yeo, P., and Lack, A., *The Natural History of Pollination*, Harper Collins, London, 1996.

Nilsson, L.A., personal communication, 2000.

Müller, H., *Befruchtung der Blumen durch Insekten und die gegenseitigen Anpassungen beider*, Verlag von Wilhelm Engelmann, Leipzig, 1873.

Jennersten, O., Flower visitation and pollination efficiency of some north European butterflies, *Oecologia* 63, 80, 1984.

Andersson, S. and Bergman, P., unpublished data, 2001.

Douwes, P., Adult feeding in the scarce copper, *Heodes virgaureae* L. (Lep., Lycaenidae), *Entomol. Tidskr.* 99, 1, 1978.

Jennersten, O., Nectar source plant selection and distribution pattern in an autumn population of *Gonepteryx rhamni* (Lep. Pieridae), *Entomol. Tidskr.* 101, 109, 1980.

Grant, V. and Grant, K.A., *Flower Pollination of the Phlox Family*, Columbia University Press, New York, 1965.

Proctor, M. and Yeo, P., *The Pollination of Flowers*, William Collins Sons, Glasgow, 1975.

Faegri, K. and van der Pijl, L., *The Principles of Pollination Ecology*, Pergamon Press, Oxford, 1979.

Delforge, P., *Europas Orkideer*, G.E.C. Gads Forlag, Köpenhamn, 1995.

Crane, J., Imaginal behaviour of a Trinidad butterfly, *Heliconius erato* hydara Hewitson, with special reference to the social use of color, *Zoologica* 40, 167, 1955.

Bawa, K.S. and Beach, J.H., Self-incompatibility systems in the Rubiaceae of a tropical lowland wet forest, *Am. J. Bot.* 70, 1281, 1983.

Barrows, E.M., Nectar robbing and pollination of *Lantana camara* (Verbenaceae), *Biotropica* 8, 132, 1976.

Schemske, D.W., Pollinator specificity in *Lantana camara* and *L. trifolia* (Verbenaceae), *Biotropica* 8, 260, 1976.

Lind, H. and Lindeborg, M., Lepidopterans as presumptive pollinators of *Anacamptis pyramidalis*, *Entomol. Tidskr.* 110, 156, 1989.

Lind, H., Occurrence, population trends and fruit setting in *Anacamptis pyramidalis* on Öland, Sweden, *Svensk Bot. Tidskr.* 86, 329, 1992.

Baker, H.G. and Baker, I., Floral nectar sugar constituents in relation to pollinator type, in *Handbook of Experimental Pollination Biology*, Jones, C.E. and Little, R.J., Eds., Van Nostrand Reinhold, New York, 1983, p. 117.

Erhardt, A. and Baker, I., Pollen amino acids—an additional diet for a nectar feeding butterfly?, *Plant Syst. Evol.* 169, 111, 1990.

Erhardt, A., Nectar sugar and amino acid preferences of *Battus philenor* (Lepidoptera, Papilionidae), *Ecol. Entomol.* 16, 425, 1991.

Erhardt, A., Preference and non-preferences for nectar constituents in *Ornithoptera priamus poseidon* (Lepidoptera, papilionidae), *Oecologia* 90, 581, 1992.

Erhardt, A. and Rusterholz, H.P., Do peacock butterflies (*Inachis io* L.) detect and prefer nectar amino acids and other nitrogenous compounds?, *Oecologia* 117, 536, 1998.

Rusterholz, H.P. and Erhardt, A., Can nectar properties explain sex-specific flower preferences in the Adonis blue butterfly *Lysandra bellargus*?, *Ecol. Entomol.* 25, 81, 2000.

Schmitt, J., Pollinator foraging behaviour and gene dispersal in *Senecio* (Compositae), *Evolution* 34, 934, 1980.

Courtney, S.P., Hill, C.J., and Westerman, A., Pollen carried for long periods by butterflies, *Oikos* 38, 260, 1982.

Lind, H., Lepidoptera: important long-distance pollinators for plants in fragmented habitats, *Svensk Bot. Tidskr.* 88, 185, 1994.

Denton, G.R.W., Muniappan, R., and Marutani, M., The distribution and biological control of *Lantana camara* in Micronesia, *Micronesica* 3(suppl), 71, 1991.

Weiss, M.R., Floral colour change: a widespread functional convergence, *Am. J. Bot.* 82, 167, 1995.

Kevan, P.G., Insect pollination of high arctic flowers, *J. Ecol.* 60, 831, 1972.

Kevan, P.G., Flower, insect, and pollination ecology in the Canadian high arctic, *Polar Rec.* 16, 667, 1973.

Philipp, M., Bocher, J., Mattsson, O., and Woodell, S.R.J., A quantitative approach to the sexual reproductive biology and population structure in some arctic flowering plants: *Dryas integrifolia*, *Silene acaulis* and *Ranunculus nivalis*, *BioScience* 34, 1, 1990.

Totland, O., Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities, *Can. J. Bot.* 71, 1072, 1993.

Kearns, C.A. and Inouye, D.W., Fly pollination of *Linum lewisii* (Linaceae), *Am. J. Bot.* 81, 1091, 1994.

Bergman, P., Molau, U., and Holmgren, B., Micrometeorological impacts on insect activity and plant reproductive success in an alpine environment, Swedish Lapland, *Arctic Alpine Res.* 28, 196, 1996.

Cruden, R.W. and Hermann-Parker, S.M., Butterfly pollination of *Caesalpinia pulcherrima*, with observations on a psychophilous syndrome, *J. Ecol.* 67, 155, 1979.

Shykoff, J.A., Sex polymorphism in *Silene acaulis* (Caryophyllaceae) and the possible role of sexual selection in maintaining females, *Am. J. Bot.* 79, 138, 1992.

Erhardt, A. and Jäggi, B., From pollination by Lepidoptera to selfing: the case of *Dianthus glacialis* (Caryophyllaceae), *Plant Syst. Evol.* 195, 67, 1995.

Marr, D.L., Impact of a pollinator-transmitted disease on reproduction in healthy *Silene acaulis*, *Ecology* 78, 1471, 1997.

Knudsen, J.T., Tollsten, L., and Bergström, G., Floral scents: a checklist of volatile compounds isolated by head-space techniques, *Phytochemistry* 33, 253, 1993.

Tollsten, L. and Bergström, G., Variation and post-pollination changes in floral odours released by *Platanthera bifolia* (Orchidaceae), *Nord. J. Bot.* 9, 359, 1989.

Grant, V., Pollination systems as isolating mechanisms in angiosperms, *Evolution* 3, 82, 1949.

Lewis, A.C., Memory constraints and flower choice in *Pieris rapae*, *Science* 232, 863, 1986.

Waser, N.M., Flower constancy: definition, cause, and measurement, *Am. Nat.* 127, 593, 1986.

Goulson, D. and Cory, J.S., Flower constancy and learning in foraging preferences of the green-veined white butterfly *Pieris napi*, *Ecol. Entomol.* 18, 315, 1993.

Goulson, D., Ollerton, J., and Sluman, C., Foraging strategies in the small skipper butterfly, *Thymelicus flavus*: when to switch?, *Anim. Behav.* 53, 1009, 1997.

Stebbins, G.L., Adaptive radiation in reproductive characteristics in angiosperms, I: pollination mechanisms, *Annu. Rev. Ecol. Syst.* 1, 307, 1970.

Nilsson, L.A., Orchid pollination biology, *Trends Ecol. Evol.* 7, 255, 1992.

van der Pijl, L., Ecological aspects of flower evolution, II. Zoophilous flower classes, *Evolution* 15, 44, 1960.

Crepet, W.L., The role of insect pollination in the evolution of the angiosperms, in *Pollination Biology*, Real, L., Ed., Academic Press, Orlando, FL, 1983, p. 31.

Pellmyr, O. and Thien, L.B., Insect reproduction and floral fragrances: keys to the evolution of the angiosperms?, *Taxon* 35, 76, 1986.

Firn, R.D. and Jones, C.G., Natural products: a simple model to explain chemical diversity, *Nat. Prod. Rep.* 20, 382, 2003.

Feinsinger, P., Coevolution and pollination, in *Coevolution*, Futuyma, D.J. and Slatkin, M., Eds., Sinauer Associates, Sunderland, MA, 1983, p. 282.

Knudsen, J.T. and Tollsten, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth pollinated taxa, *Bot. J. Linn. Soc.* 113, 263, 1993.

Raguso, R.A. and Pichersky, E., Floral volatiles from *Clarkia breweri* and *C. concinna* (Onagraceae): recent evolution of floral scent and moth pollination, *Plant Syst. Evol.* 194, 55, 1995.

Andersson, S., Nilsson, L.A., Groth, I., and Bergström, G., Floral scents in butterfly-pollinated plants: possible convergence in chemical composition, *Bot. J. Linn. Soc.* 140, 129, 2002.

Jennersten, O., Pollination in *Dianthus deltoids* (Caryophyllaceae): effects of habitat fragmentation on visitation and seed set, *Conserv. Biol.* 2, 359, 1988.

Cocucci, A.A., Galetto, L., and Sersic, A., The floral syndrome of *Caesalpinia gilliesii* (Fabaceae-Caesalpinioidae), *Darwiniana (San Isidro)* 31, 111, 1992.

Johnson, S.D. and Bond, W.J., Red flowers and butterfly pollination in the fynbos of South Africa, in *Plant-Animal Interactions in Mediterranean-Type Ecosystems*, Arianoutsou, M. and Groves, R., Eds., Kluwer Academic, Dordrecht, 1994, p. 137.

Johnson, S.D. and Steiner, K.E., Generalization versus specialization in plant pollination systems, *Trends Ecol. Evol.* 15, 140, 2000.

Nilsson, L.A., Jonsson, L., Ralison, L., and Randrianjohany, E., Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers, *Biotropica* 19, 310, 1987.

Waser, N.M., Chittka, L., Price, M.V., Williams, N.M., and Ollerton, J., Generalization in pollination systems, and why it matters, *Ecology* 77, 1043, 1996.

Johnson, S.D. and Steiner, K.E., Specialized pollination systems in southern Africa, *S. Afr. J. Sci.* 99, 345, 2003.

Wink, M., Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective, *Phytochemistry* 64, 3, 2003.

Johnson, S.D., Linder, H.P., and Steiner, K.E., Phylogeny and radiation of pollination systems in *Disa* (Orchidaceae), *Am. J. Bot.* 85, 402, 1998.

Erhardt, A., Pollination of *Dianthus gratianopolitanus* (Caryophyllaceae), *Plant Syst. Evol.* 170, 125, 1990.

Erhardt, A., Pollination of *Dianthus superbus* L., *Flora* 185, 99, 1991.

Nilsson, L.A., Processes of isolation and introgressive interplay between *Platanthera bifolia* (L.) Rich. and *P. chlorantha* (Custer) Reichb. (Orchidaceae), *Bot. J. Linn. Soc.* 87, 325, 1983.

Joulain, D., Study of the fragrance given off by certain springtime flowers, in *Progress in Essential Oil Research*, Brunkel, E.-J., Ed., Walter de Gruyter, Berlin, 1986, p. 57.

Kaiser, R., *The Scent of Orchids: Olfactory and Chemical Investigations*, Elsevier, Amsterdam, 1993.

Andersson, S., unpublished data, 2000.

Honda, K., Ômura, H., and Hayashi, N., Identification of floral volatiles from *Ligustrum japonicum* that stimulate flower-visiting by cabbage butterfly, *Pieris rapae*, *J. Chem. Ecol.* 24, 2167, 1998.

Ômura, H., Honda, K., Nakagawa, A., and Hayashi, N., The role of floral scent of the cherry tree, *Prunus yedoensis*, in the foraging behavior of *Luehdorfia japonica* (Lepidoptera: Papilionidae), *Appl. Entomol. Zool. (Jpn.)* 34, 309, 1999.

Ômura, H., Honda, K., and Hayashi, N., Chemical and chromatic bases for preferential visiting by the cabbage butterfly, *Pieris rapae*, to rape flowers, *J. Chem. Ecol.* 25, 1895, 1999.

Schemske, D.W. and Bradshaw, H.D., Jr., Pollinator preference and the evolution of floral traits in monkeyflowers (*Mimulus*), *Proc. Natl. Acad. Sci. USA* 96, 11910, 1999.

Pellmyr, O., Three pollination morphs in *Cimicifuga simplex*; incipient speciation due to inferiority in competition, *Oecologia* 68, 304, 1986.

Knudsen, J.T., Floral scent chemistry in geonomoid palms (Palmae: Geonomeae) and its importance in maintaining reproductive isolation, in *Evolution, Variation, and Classification of Palms Memoirs of the New York Botanical Garden*, Menderson, A. and Borchsenius, F., Eds., New York Botanical Garden Press, New York, 1999, p. 141.

Borg-Karlson, A.-K., Unelius, C.R., Valterova, I., and Nilsson, L.A., Floral fragrance chemistry in the early flowering shrub *Daphne mezereum* (Thymelaeaceae), *Phytochemistry* 41, 1477, 1996.

Heath, R.R., Landolt, P.J., Dueben, B., and Lenczewski, B., Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths, *Environ. Entomol.* 21, 854, 1992.

Pham-Delegue, M.H., Behavioural discrimination of oilseed rape volatiles by the honeybee *Apis mellifera* L., *Chem. Senses* 18, 483, 1993.

Moya, S. and Ackerman, J.D., Variation in the floral fragrance of *Epidendrum ciliare* (Orchidaceae), *Nord. J. Bot.* 13, 41, 1993.

Kullenberg, B. and Bergström, G., The pollination of Ophrys orchids, in *Chemistry in Botanical Classification, Proceedings of the 25th Nobel Symposium*, Bendz, G. and Santesson, J., Eds., Academic Press, New York, 1974, p. 253.

Williams, N.H. and Whitten, W.M., Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade, *Biol. Bull.* 164, 355, 1983.

Kullenberg, B., Borg-Karlson, A.-K., and Kullenberg, A.L., Field studies on the behaviour of the *Eucera nigrilabris* male in the odour flow from flower labellum extract of *Ophrys tenthredinifera*, *Nova Acta Reg. Soc. Sci. Ups. Ser. V:C 3*, 79, 1984.

Borg-Karlson, A.-K., Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae), *Phytochemistry* 29, 1359, 1990.

Gerlach, G. and Schill, R., Composition of orchid scents attracting euglossine bees, *Bot. Acta* 104, 379, 1991.

Sazima, M., Vogel, S., Cocucci, A.A., and Hausner, G., The perfume flowers of Cyphomandra (Solanaceae): pollination by euglossine bees, bellows mechanism, osmophores, and volatiles, *Plant Syst. Evol.* 187, 51, 1993.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Erdmann, D., and Francke, W., Variation of floral scent emission and postpollination changes in individual flowers of *Ophrys sphegodes* subsp. *sphegodes*, *J. Chem. Ecol.* 23, 2881, 1997.

Schiestl, F.P. and Ayasse, M., Post-mating odor in females of the solitary bee, *Andrena nigroaenea* (Apoidea, Andrenidae), inhibits male mating behavior, *Behav. Ecol. Sociobiol.* 48, 303, 2000.

Knudsen, J.T., Andersson, S., and Bergman, P., Floral scent attraction in *Geonoma macrostachys*, an understorey palm of the Amazonian rain forest, *Oikos* 85, 409, 1999.

Brantjes, N.B.M., Sphingophilous flowers: function of their scent, in *Pollination and Dispersal*, Brantjes, N.B.M., and Linskens, H.F., Eds., 1973, p. 27.

Brantjes, N.B.M., Sensory responses to flower in night-flying moths, in *The Pollination of Flowers by Insects*, Richards, A.J., Ed., Academic Press, London, 1978, p. 13.

Loughrin, J.H., Hamilton-Kemp, T.R., Andersen, R.A., and Hildebrand, D.F., Circadian rhythm of volatile emission from flowers of *Nicotiana sylvestris* and *N. suaveolens*, *Physiol. Plant.* 83, 492, 1991.

Knudsen, J.T. and Tollsten, L., Floral scent in bat-pollinated plants: a case of convergent evolution, *Bot. J. Linn. Soc.* 119, 45, 1995.

Dobson, H.E.M., Role of flower and pollen aromas in host plant recognition by solitary bees, *Oecologia* 72, 618, 1987.

Dobson, H.E.M., Groth, I., and Bergström, G., Pollen advertisement: chemical contrasts between whole-flower and pollen odors, *Am. J. Bot.* 83, 877, 1996.

Dobson, H.E.M., Danielson, E.M., and van Wesep, I.D., Pollen odor chemicals as modulators of bumble bee foraging on *Rosa rugosa* Thunb. (Rosaceae), *Plant Species Biol.* 14, 153, 1999.

Dobson, H.E.M. and Bergström, G., The ecology and evolution of pollen odors, *Plant Syst. Evol.* 222, 63, 2000.

Giurfa, M., Núñez, J.A., and Backhaus, W., Odour and colour information in the foraging choice behaviour of the honeybee, *J. Comp. Physiol. A* 175, 773, 1994.

Raguso, R.A. and Willis, M.A., Synergy between visual and olfactory cues in nectar feeding by naïve hawkmoths, *Manduca sexta*, *Anim. Behav.* 63, 1, 2002.

Lewis, A.C. and Lipani, G.A., Learning and flower use in butterflies: hypothesis from honey bees, in *Insect-Plant Interactions*, Bernays, E.A., Ed., CRC Press, Boca Raton, FL, 1990, p. 95.

Frazier, J.L., Nervous system: sensory system, in *Fundamentals of Insect Physiology*, Blum, M.S. Ed., John Wiley & Sons, New York, 1985, p. 287.

Ilse, D., Über den Farbensinn der Tagfalter, *J. Comp. Physiol.* 8, 658, 1928.

Ilse, D. and Vaidya, V.G., Spontaneous feeding response to colours in *Papilio demoleus* L., *Proc. Indian Acad. Sci. B* 43, 23, 1956.

Swihart, C.A. and Swihart, S.L., Colour selection and learned feeding preferences in the butterfly *Heliconius charitonius* Linn., *Anim. Behav.* 18, 60, 1970.

Swihart, C.A., Colour discrimination by the butterfly *Heliconius charitonius* Linn., *Anim. Behav.* 19, 156, 1971.

Swihart, S.L., The neural basis of color vision in the butterfly, *Heliconius erato*, *J. Insect Physiol.* 18, 1015, 1972.

Weiss, M.R., Floral colour changes as cues for pollinators, *Nature* 354, 227, 1991.

Weiss, M.R., Associative colour learning in a nymphalid butterfly, *Ecol. Entomol.* 20, 298, 1995.

Weiss, M.R., Innate colour preferences and flexible colour learning in the pipevine swallowtail, *Anim. Behav.* 53, 1043, 1997.

Kandori, I. and Ohsaki, N., The learning abilities of the white cabbage butterfly, *Pieris rapae*, foraging for flowers, *Res. Popul. Ecol.* 38, 111, 1996.

Kinoshita, M., Shimada, N., and Arikawa, K., Colour vision of the foraging swallowtail butterfly *Papilio xuthus*, *J. Exp. Biol.* 202, 95, 1999.

Groth, I., Bergström, G., and Pellmyr, O., Floral fragrances in *Cimicifuga*: chemical polymorphism and incipient speciation in *Cimicifuga simplex*, *Biochem. Syst. Ecol.* 15, 441, 1987.

Andersson, S. and Dobson, H.E.M., Behavioural foraging responses by the butterfly *Heliconius melpomene* to *Lantana camara* floral scent, *J. Chem. Ecol.* 29, 2303, 2003.

Andersson, S., Foraging responses in the butterflies *Inachis io*, *Aglais urticae* (Nymphalidae), and *Gonepteryx rhamni* (Pieridae) to floral scents, *Chemoecology* 13, 1, 2003.

Andersson, S., Antennal responses to floral scents in the butterflies *Inachis io*, *Aglais urticae* (Nymphalidae), and *Gonepteryx rhamni* (Pieridae), *Chemoecology* 13, 13, 2003.

Andersson, S. and Dobson, H.E.M., Antennal responses to floral scents in the butterfly *Heliconius melpomene*, *J. Chem. Ecol.* 29, 2319, 2003.

Wickman, P.-O., Butterfly leks, *Entomol. Tidskr.* 117, 73, 1996.

Porter, K., Eggs and egg-laying, in *The Ecology of Butterflies in Britain*, Dennis, R.L.H., Ed., Oxford University Press, Oxford, 1992, p. 46.

Mevi-Schutz, J. and Erhardt, A., Can *Inachis io* detect nectar amino acids at low concentrations?, *Physiol. Entomol.* 27, 256, 2002.

McNeely, C. and Singer, M.C., Contrasting the roles of learning in butterflies foraging for nectar and oviposition sites, *Anim. Behav.* 61, 847, 2001.

Weiss, M.R. and Papaj, D.R., Colour learning in two behavioural contexts: how much can a butterfly keep in mind?, *Anim. Behav.* 65, 425, 2003.

Hartlieb, E., Anderson, P., and Hansson, B.S., Appetitive learning of odours with different behavioural meaning in moths, *Physiol. Behav.* 67, 671, 1999.

Creighton, C.S., McFadden, T.L., and Cuthbert, E.R., Supplementary data on phenylacetaldehyde: an attractant for Lepidoptera, *J. Econ. Entomol.* 66, 114, 1973.

Cantelo, W.W. and Jacobson, M., Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps, *Environ. Entomol.* 8, 444, 1979.

Haynes, K.F., Zhao, J.Z., and Latif, A., Identification of floral compounds from *Abelia grandiflora* that stimulate upwind flight in cabbage looper moths, *J. Chem. Ecol.* 17, 637, 1991.

Plepys, D., Odour-mediated nectar foraging in the silver Y moth, *Autographa gamma*, PhD dissertation, Lund University, Sweden, 2001.

Nilsson, L.A., Orchid pollination biology, *Trends Ecol. Evol.* 7, 255, 1992.

Darwin, C., *On the Various Contrivances by Which Orchids Are Fertilized by Insects*, John Murray, London, 1885.

Dafni, A., Mimicry and deception in pollination, *Annu. Rev. Ecol. Syst.* 15, 259, 1984.

Dafni, A., Floral mimicry: mutualism and unidirectional exploitation of insects by plants, in *Plant Surface and Insects*, Arnold, E., Ed., Richard Clay, Ltd., London, 1986, p. 81.

Ackermann, J.D., Mechanisms and evolution of food-deceptive pollination systems in orchids, *Lindleyana* 1, 108, 1986.

Dafni, A. and Bernhardt, P., Pollination of terrestrial orchids of southern Australia and the Mediterranean region, in *Evolutionary Biology*, Hecht, M.K., Wallace, B., and Macintyre, R.J., Eds., Plenum Press, New York, 1990, p. 193.

Pasteur, G., A classificatory review of mimicry systems, *Annu. Rev. Ecol. Syst.* 13, 169, 1982.

Correvon, H. and Pouyanne, A., Un curieux cas de mimétisme chez les Ophrydées, *J. Soc. Nat. Hort. France* 17, 29, 1916.

Pouyanne, A., Le fecondation des *Ophrys* par les insectes, *Bull. Soc. Hist. Nat. Afr. Nord.* 8, 6, 1917.

Coleman, E., Pollination of an Australian orchid by male ichneumonid *Lissopimpla semipunctata* Kirby, *Trans. R. Entomol. Soc. Lond.* 76, 533, 1928.

Coleman, E., Further observations on the pseudocopulation of the male *Lissopimpla semipunctata* Kirby (Hymenoptera parasitica) with the Australian orchid *Cryptostylis leptochila* F.v.M., *Proc. R. Entomol. Soc. Lond.* 13, 82, 1938.

Kullenberg, B., Studies in *Ophrys* pollination, *Zool. Bidrag. (Uppsala)* 34, 1, 1961.

Sasaki, M., Ono, M., Asada, S., and Yoshida, T., Oriental orchid (*Cymbidium pumilum*) attracts drones of the Japanese honeybee (*Apis cerana japonica*) as pollinator, *Experientia* 47, 1229, 1991.

Peakall, R., The unique pollination of *Leporella fimbriata* (Orchidaceae): pollination by pseudocopulating male ants (*Myrmecia urens*, Formicidae), *Plant Syst. Evol.* 167, 137, 1989.

Peakall, R., Responses of male *Zaspilothynnus trilobatus* Turner wasps to females and the sexually deceptive orchid it pollinates, *Funct. Ecol.* 4, 159, 1990.

Steiner, K.E., Whitehead, V.B., and Johnson, S.D., Floral and pollinator divergence in two sexually deceptive South African orchids, *Am. J. Bot.* 81, 185, 1994.

van der Pijl, L. and Dodson, C.H., *Orchid Flowers: Their Pollination and Evolution*, University of Miami Press, Coral Gables, FL, 1966.

van der Cingel, N.A., *An Atlas of Orchid Pollination: European Orchids*, A.A. Balkema, Rotterdam, 1995.

Singer, R.B., The pollination mechanism in *Trigonidium obtusum* Lindl (Orchidaceae: Maxillariinae): sexual mimicry and trap-flowers, *Ann. Bot. Lond.* 89, 157, 2002.

Singer, R.B., Flach, A., Koehler, S., Marsaioli, A.J., and Amaral, M.C.E., Sexual mimicry in *Mormolyca ringens* (Lindl.) Schltr. (Orchidaceae: Maxillariinae), *Ann. Bot. Lond.* 93, 755, 2004.

Kullenberg, B. and Bergström, G., The pollination of *Ophrys* orchids, *Bot. Notiser* 129, 11, 1976.

Paulus, H.F. and Gack, C., Pollination of *Ophrys* (Orchidaceae) in Cyprus, *Plant Syst. Evol.* 169, 177, 1990.

Ames, O., Pollination of orchids through pseudocopulation, *Bot. Mus. Leafl. Harv. Univ.* 5, 1, 1937.

Baker, H.G. and Hurd, P.D., Jr., Intrafloral ecology, *Annu. Rev. Entomol.* 13, 385, 1968.

Dressler, R.L., *The Orchid: Natural History and Classification*, Harvard University Press, Cambridge, MA, 1981.

Borg-Karlson, A.-K., Chemical and ethological studies of pollination in the genus *Ophrys* (Orchidaceae), *Phytochemistry* 29, 1359, 1990.

Paulus, H.F. and Gack, C., Pollinators as prepollinating isolation factors: evolution and speciation in *Ophrys* (Orchidaceae), *Isr. J. Bot.* 39, 43, 1990.

Bower, C.C., Demonstration of pollinator-mediated reproductive isolation in sexually deceptive species of *Chiloglottis* (Orchidaceae: Caladeniinae), *Aust. J. Bot.* 44, 15, 1996.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F., and Francke, W., Orchid pollination by sexual swindle, *Nature* 399, 421, 1999.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Löfstedt, C., Hansson, B.S., Ibarra, F., and Francke, W., Sex pheromone mimicry in the early spider orchid (*Ophrys sphegodes*): patterns of hydrocarbons as the key mechanism for pollination by sexual deception, *J. Comp. Physiol. A* 186, 567, 2000.

Ayasse, M., Schiestl, F.P., Paulus, H.F., Ibarra, F., and Francke, W., Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals, *Proc. R. Soc. Lond. B* 270, 517, 2003.

Peakall, R. and Beattie, A.J., Ecological and genetic consequences of pollination by sexual deception in the orchid *Caladenia tentaculata*, *Evolution* 50, 2207, 1996.

Schiestl, F.P., Peakall, R., Mant, J.G., Ibarra, F., Schulz, C., Franke, S., and Francke, W., The chemistry of sexual deception in an orchid-wasp pollination system, *Science* 302, 437, 2003.

Ågren, L., Kullenberg, B., and Sensenbaugh, T., Congruences in pilosity between three species of *Ophrys* (Orchidaceae) and their hymenopteran pollinators, *Nova Acta Reg. Soc. Sci. Ups. Ser. V:C* 3, 15, 1984.

Schiestl, F.P., Peakall, R., and Mant, J., Chemical communication in the sexually deceptive orchid genus *Cryptostylis*, *Bot. J. Linn. Soc.* 144, 199, 2004.

Stökl, J., Paulus, H., Dafni, A., Schulz, C., and Francke, W., Ayasse M Pollinator attracting odour signals in sexually deceptive orchids of the *Ophrys fusca* group, *Plant Syst. Evol.* 254, 105, 2005.

Stoutamire, W.P., Wasp pollination species of *Caladenia* (Orchidaceae) in southwestern Australia, *Aust. J. Bot.* 31, 383, 1983.

Peakall, R., Beattie, A.J., and James, S.J., Pseudocopulation of an orchid by male ants: a test of two hypotheses accounting for the rarity of ant pollination, *Oecologia* 73, 522, 1987.

Kores, P.J., Molvray, M., Weston, P.H., Hopper, S.D., Brown, A.P., Cameron, K.M., and Chase, M.W., A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data, *Am. J. Bot.* 88, 1903, 2001.

Stoutamire, W.P., Pollination studies in Australian terrestrial orchids, *Natl. Geog. Soc. Res. Rep.* 13, 591, 1981.

Wallace, B.J., On *Cryptostylis* pollination and pseudocopulation, *Orchadian* 5, 168, 1978.

Bower, C.C., The use of pollinators in the taxonomy of sexually deceptive orchids in the subtribe Caladeniinae (Orchidaceae), *Orchadean* 10, 331, 1992.

Mant, J.G., Schiestl, F.P., Peakall, R., and Weston, P.H., A phylogenetic study of pollinator conservatism among sexually deceptive orchids, *Evolution* 56, 888, 2002.

Schiestl, F.P., personal communication, 2005.

Delforge, P., *Guide des Orchidées d'Europe, d'Afrique du Nord et du Proche-Orient*, Delachaux et Niestlé S.A., Lausanne-Paris, 2001.

Paulus, H.F. and Gack, C., Signalfälschung als Bestäubungsstrategie in der mediterranen Orchideengattung *Ophrys* — Probleme der Artbildung und der Artabgrenzung, in *International Symposium on European Orchids, Eurorchis*, vol. 92, Brederoo, P. and Kapteyn den Boumeester, D.W., Eds., Stichting Uitgeverij Koninklijke Nederlandse Natuuuhistorische Vereniging in cooperation with the Stichting Europese orchideen van de KNNV, Utrecht/Haarlem, 1994, p. 45.

Paulus, H.F., Signale in der Bestäuberanlockung: Weibchenimitation als Bestäubungsprinzip bei der mediterranen Orchideengattung *Ophrys*, *Verh. Zool.-Bot. Ges. Österreich.* 134, 133, 1997.

Ayasse, M., *unpublished data*.

Bergström, G., Role of volatile chemicals in *Ophrys*-pollinator interactions, in *Biochemical Aspects of Plant and Animal Coevolution*, Harborne, G., Ed., Academic Press, London, 1978, p. 207.

Tengö, J., Odour-released behaviour in *Andrena* male bees (Apoidea, Hymenoptera), *Zool. Z. 15*, 1979.

Ayasse, M., Schiestl, F.P., Paulus, H.F., Lofstedt, C., Hansson, B., Ibarra, F., and Francke, W., Evolution of reproductive strategies in the sexually deceptive orchid *Ophrys*

sphegodes: how does flower-specific variation of odor signals influence reproductive success?, *Evolution* 54, 1995, 2000.

Eigenbrode, S.D. and Espelie, K.E., Effects of plant epicuticular lipids on insect herbivores, *Annu. Rev. Entomol.* 40, 171, 1995.

Francke, W., Convergency and diversity in multicomponent insect pheromones, in *Advances in Invertebrate Reproduction*, Porchet, M., Andries, J.-C., and Dhainaut, A., Eds., Elsevier Science, Amsterdam, 1986, p. 327.

Dodson, C.H., The importance of pollination in the evolution of the orchids of tropical America, *Am. Orchid Soc. Bull.* 31, 525, 1963.

Dodson, C.H. and Escobar, R.E., The Telipogons of Costa Rica (I), *Orquideologia* 17, 3, 1987.

Blanco, M.A. and Barboza, G., Pseudocopulatory copulation in *Lepanthes* (Orchidaceae: Pleurothallidinae) by fungus gnats, *Ann. Bot.* 95, 763, 2005.

Kerr, W.E. and Lopez, C.R., Biologia da reproducao de *Trigona (Plebeia) droryana* F. Smith, *Rev. Bras. Biol.* 22, 335, 1962.

Van der Cingel, N.A., *An Atlas of Orchid Pollination: America, Africa, Asia and Australia*, A.A. Balkema, Rotterdam, 2001.

Flach, A., Dondon, R.C., Singer, R.B., Koehler, S., Amaral, M.C.E., and Marsaioli, A.J., The chemistry of pollination in selected Brazilian Maxillariinae orchids: floral rewards and fragrance, *J. Chem. Ecol.* 30, 1039, 2004.

Ayasse, M., Paxton, R.J., and Tengö, J., Mating behavior and chemical communication in the Hymenoptera, *Annu. Rev. Entomol.* 46, 31, 2001.

Paulus, H.F. and Gack, G., Neue Befunde zur Pseudokopulation und Bestäuberspezifität in der Gattung *Ophrys*—Untersuchungen in Kreta, Süditalien und Israel, *Die Orchidee Sonderheft* 39, 48, 1986.

Ehrendorfer, F., Hybridisierung, Polyploidie und Evolution bei europäisch-mediterranen Orchideen, *Die Orchidee Sonderheft*, 33, 15, 1980.

Jones, D.L., *Native Orchids of Australia*, Frenchs Forest, Australia, Reed, 1988.

Stoutamire, W.P., Pseudocopulation in Australian terrestrial orchids, *Am. Orchid Soc. Bull.* 44, 226, 1975.

Lloyd, G., The pollination biology of *Cryptostylis erecta* and *Cryptostylis subulata* (Orchidaceae) and the maintenance of species integrity, unpublished B.Sc. Honours Thesis, School of Biological Sciences, Sydney, Australia, 2003.

Roelofs, W.L., The chemistry of sex attraction, in *Chemical Ecology: The Chemistry of Biotic Interaction*, Eisner, T. and Meinwald, J., Eds., National Academy Press, Washington, DC, 1995, p. 103.

Erdmann, D.H., Identifizierung und Synthese flüchtiger Signalstoffe aus Insekten und ihren Wirtspflanzen, *PhD dissertation*, University of Hamburg, Hamburg, Germany, 1996.

Westrich, P., *Die Wildbienen Baden Württembergs I*, Verlag Eugen Ulmer, Stuttgart, Germany, 1989.

Schiestl, F.P. and Ayasse, M., Do changes in floral odor cause sympatric speciation in sexually deceptive orchids?, *Plant Syst. Evol.* 234, 111, 2002.

Osten, T., Die Scoliiden des Mittelmeer-Gebietes und angrenzender Regionen (Hymenoptera) Ein Bestimmungsschlüssel, *Linzer Biol. Beitr.* 32, 537, 2000.

Ayasse, M., Schiestl, F., Paulus, H.F., Erdmann, D., and Francke, W., Chemical communication in the reproductive biology of *Ophrys sphegodes*, *Mitt. Dtsch. Ges. Allg. Angew. Ent.* 11, 473, 1997.

Paulus, H.F., Co-Evolution und einseitige Anpassung in Blüten-Bestäuber-Systemen. Bestäuber als Schrittmacher in der Blütenevolution, *Verh. Dt. Zool. Gesellsch.* 81, 25, 1988.

Wong, B.B.M. and Schiestl, F.P., How an orchid harms its pollinator, *Proc. R. Soc. Lond.* 269, 1529, 2002.

Ayasse, M., Engels, W., Lübke, G., and Francke, W., Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, *Lasioglossum (Evylaeus) malachurum* (Hymenoptera: Halictidae), *Behav. Ecol. Sociobiol.* 45, 95, 1999.

Ayasse, M. and Schiestl, F.P., Evolution of reproductive strategies in the sexually deceptive orchid *Ophrys sphegodes*: how does variation of floral scent emission after pollination influence pollinator behaviour, *Zoology* 103, 39, 2000.

Stowe, M.K., Chemical mimicry, in *Chemical Mediation of Coevolution*, Spencer, K.C., Ed., Academic Press, Chicago, 1988, p. 513.

Neiland, M.R.M. and Wilcock, C.C., Maximisation of reproductive success by European Orchidaceae under conditions of infrequent pollination, *Photoplasma* 187, 39, 1995.

Smith, B.H. and Ayasse, M., Kin-based male mating preferences in two species of halictine bees, *Behav. Ecol. Sociobiol.* 20, 313, 1987.

Fritz, A.-L. and Nilsson, L.A., Reproductive success and gender variation in deceit-pollinated orchids, in *Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants*, Lloyd, D.G. and Barrett, S.C.H., Eds., Chapman & Hall, New York, 1996, p. 319.

Arditti, J., Aspects of the physiology of orchids, in *Advances in Botanical Research*, vol. 7, Woolhouse, H.W., Ed., Academic Press, London, 1979, p. 422.

Schiestl, F.P. and Ayasse, M., Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? *Oecologia* 126, 531, 2001.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Erdmann, D., and Francke, W., Variation of floral scent emission and postpollination changes in individual flowers of *Ophrys sphegodes* subsp. *sphegodes*, *J. Chem. Ecol.* 23, 2881, 1997.

Arditti, J., *Fundamentals of Orchid Biology*, John Wiley & Sons, New York, 1992.

Vogel, S., *The Role of Scent Glands in Pollination*, Smithsonian Institution Libraries, Washington DC, 1990.

Schiestl, F.P. and Ayasse, M., Post mating odor in females of the solitary bee, *Andrena nigroaenea* (Apoidea, Andrenidae), inhibits male mating behavior, *Behav. Ecol. Sociobiol.* 48, 303, 2000.

Proctor, M., Yeo, P., and Lack, A., *The Natural History of Pollination*, Timber Press, Portland, OR, 1996.

Moya, S. and Ackerman, J.D., Variation in the floral fragrance of *Epidendrum ciliare* (Orchidaceae), *Nord. J. Bot.* 13, 41, 1993.

Gigord, L.D.B., Macnair, M.R., and Smithson, A., Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid *Dactylorhiza sambucina* (L.) Soó, *Proc. Natl. Acad. Sci. USA* 98, 6253, 2001.

Baker, T.C., Sex pheromone communication in the Lepidoptera: new research progress, *Experientia* 45, 248, 1989.

Löfstedt, C., Herrebout, W.M., and Menken, J., Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moth (Yponomeutidae), *Chemoecology* 2, 20, 1991.

Rieseberg, L.H., Hybrid origins of plant species, *Annu. Rev. Ecol. Syst.* 28, 359, 1997.

Knobloch, I.W., Intergeneric hybridization in flowering plants, *Taxon* 21, 97, 1971.

Stebbins, G.L. and Ferlan, L., Population variability, hybridization, and introgression in some species of *Ophrys*, *Evolution* 10, 32, 1956.

Nelson, E., *Gestaltwandel und Artbildung, erörtert am Beispiel der Orchidaceen Europas und der Mittelmeerländer, insbesondere der Gattung Ophrys*, Eigenverlag, Chernes-Montreux, 1962.

Anderson, E., Introgressive hybridisation, *Biol. Rev.* 28, 280, 1953.

Orians, C.M. and Fritz, R.S., Secondary chemistry of hybrid and parental willows: phenoloic glycosides and condensed tannins in *Salix sericea*, *S. eriocephala*, and their hybrids, *J. Chem. Ecol.* 21, 1245, 1995.

Keil, T.A., Morphology and development of the peripheral olfactory organs, in *Insect Olfaction*, Hansson, B.S., Ed., Springer, Berlin, 1999, p. 5.

Steinbrecht, R.A., Pore structures in insect olfactory sensilla: a review of data and concepts, *Int. J. Insect Morphol. Embryol.* 26, 229, 1997.

Vogt, R.G. and Riddiford, L.M., Pheromone binding and inactivation by moth antennae, *Nature* 193, 161, 1981.

Buck, L. and Axel, R., A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, *Cell* 65, 175, 1991.

Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J., and Carlson, J.R., A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in *Drosophila*, *Neuron* 22, 327, 1999.

Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R., A spatial map of olfactory receptor expression in the *Drosophila* antenna, *Cell* 96, 725, 1999.

Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M., and Zwiebel, L.J., G protein-coupled receptors in *Anopheles gambiae*, *Science* 298, 176, 2002.

Krieger, J., Raming, K., Dewer, Y.M., Bette, S., Conzelmann, S., and Breer, H., A divergent gene family encoding candidate olfactory receptors of the moth *Heliothis virescens*, *Eur. J. Neurosci.* 16, 619, 2002.

Zhang, X. and Firestein, S., The olfactory receptor gene superfamily of the mouse, *Nat. Neurosci.* 5, 124, 2002.

Vosshall, L.B., The molecular logic of olfaction in *Drosophila*, *Chem. Senses* 26, 207, 2001.

Mombaerts, P., Seven transmembrane proteins as odorant and chemosensory receptors, *Science* 286, 707, 1999.

Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A., and Carlson, J.R., Integrating the molecular and cellular basis of odor coding in the *Drosophila* antenna, *Neuron* 6, 827, 2003.

Goldman, A.L., van der Goes van Naters, W., Lessing, D., Warr, C.G., and Carlson, J.R., Coexpression of two functional odor receptors in one neuron, *Neuron* 45, 661, 2005.

Stengl, M. et al. Perireceptor events and transduction mechanisms in insect olfaction, in *Insect Olfaction*, Hansson, B.S., Ed., Springer, Berlin, 1999, p. 49.

Schneider, D., Elektrophysiologische Untersuchungen von Chemo-und Mechanorezeptoren der Antenne des Seidenspinners *Bombyx mori* L., *Z. Vergl. Physiol.* 40, 8, 1957.

Liljefors, T., Thelin, B., and van der Pers, J.N.C., Structure-activity relationships between stimulus molecules and response of a pheromone receptor in turnip moth, *Agrotis segetum*: modifications of the acetate group, *J. Chem. Ecol.* 10, 1661, 1984.

Liljefors, T., Thelin, B., van der Pers, J.N.C., and Löfstedt, C., Chain-elongated analogues of a pheromone component of the turnip moth, *Agrotis segetum*. A structure-activity study using molecular mechanisms, *J. Chem. Soc. Perkin. Trans. II*, 1957, 1985.

Liljefors, T., Bengtsson, M., and Hansson, B.S., Effects of double-bond configuration on interaction between a moth sex pheromone component and its receptor. A receptor-interaction model based on molecular mechanisms, *J. Chem. Ecol.* 13, 2023, 1987.

Hansson, B.S., Larsson, M.C., and Leal, W.S., Green leaf volatile-detecting olfactory receptor neurons display very high sensitivity and specificity in a scarab beetle, *Physiol. Entomol.* 24, 121, 1999.

Larsson, M.C., Leal, W.S., and Hansson, B.S., Olfactory receptor neurons detecting plant odours and male volatiles in *Anomala cuprea* beetles (Coleoptera: Scarabidae). *J. Insect Physiol.* 47, 1065, 2001.

Stensmyr, M.C., Larsson, M.C., Bice, S.B., and Hansson, B.S., Detection of fruit- and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer *Pachnoda marginata* (Coleoptera: Cetoniinae), *J. Comp. Physiol. A* 187, 509, 2001.

Röstelien, T., Borg-Karlsson, A.-K., Falldt, J., Jacobsson, U., and Mustaparta, H., The plant sesquiterpene germacrene D specifically activates a major type of antennal receptor neuron of the tobacco budworm moth *Heliothis virescens*, *Chem. Senses* 25, 141, 2000.

Shields, V.D. and Hildebrand, J.C., Responses of a population of antennal olfactory receptor cells in the female moth *Manduca sexta* to plant associated volatile organic compounds, *J. Comp. Physiol. A* 186, 1135, 2001.

Raguso, R.A. and Willis, M.A., Floral scent and its role(s) in hawkmoth attraction, *Chem. Senses* 22, 774, 1997.

Kalinová, B., Hoskovec, M., Liblikas, I., Unelius, C.R., and Hansson, B.S., Detection of sex pheromone components in *Manduca sexta* (L.), *Chem. Senses* 26, 1175, 2001.

Anderson, P., Hansson, B.S., and Löfqvist, J., Plant-odour-specific receptor neurons on the antennae of the female and male *Spodoptera littoralis*, *Physiol. Entomol.* 20, 189, 1995.

Jönsson, M. and Anderson, P., Electrophysiological response to herbivore-induced host plant volatiles in the moth *Spodoptera littoralis*, *Physiol. Entomol.* 24, 377, 1999.

Araneda, R.C., Kini, A.D., and Firestein, S., The molecular receptive range of an odorant receptor, *Nat. Neurosci.* 3, 1248, 2000.

Kaiser, R., *The Scent of Orchids*, Elsevier Science, Amsterdam, 1993.

Mombaerts, P., The human repertoire of odorant receptor genes and pseudogenes, *Annu. Rev. Genom. Hum. Genet.* 2, 493, 2001.

Mori, K., Grouping of odorant receptors: odour maps in the mammalian olfactory bulb, *Biochem. Soc. Trans.* 31, 134, 2003.

Raguso, R.A. and Willis, M.A., Synergy between visual and olfactory cues in nectar feeding by naïve hawkmoths, *Manduca sexta*, *Anim. Behav.* 63, 685, 2002.

Guerenstein, P.G., Yepez, A., Van Haren, J., Williams, D.G., and Hildebrand, J.G., Floral CO₂ emission may indicate food abundance to nectar-feeding moths, *Naturwissenschaften* 91, 329, 2004.

Kent, K.S., Harrow, I.D., Quartararo, P., and Hildebrand, J.G., An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in *Manduca sexta* and certain other sphinx moths and silk moths, *Cell Tissue Res.* 245, 237, 1986.

Bogner, F., Boppré, M., Ernst, K.D., and Boeckh, J., CO₂ sensitive receptors on labial palps of *Rhodogastria* moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection, *J. Comp. Physiol. A* 158, 741, 1986.

Guerenstein, P.G., Christensen, T.A., and Hildebrand, J.G., Sensory processing of environmental CO₂ information in the moth nervous system, *Chem. Senses* 27, 661, 2002.

Krieger, J., Klink, O., Mohl, C., Raming, K., and Breer, H., A candidate olfactory receptor subtype highly conserved across different insect orders, *J. Comp. Physiol. A* 189, 519, 2003.

Anton, S. and Homberg, U., Antennal lobe structure, in *Insect Olfaction*, Hansson, B.S., Ed., Springer, Berlin, 1999, p. 97.

Boeckh, J. and Tolbert, L.P., Synaptic organization and development of the antennal lobe in insects, *Microsc. Res. Tech.* 24, 260, 1993.

Distler, P.G. and Boeckh, J., Synaptic connection between olfactory receptor cells and uniglomerular projection neurons in the antennal lobe of the American cockroach, *Periplaneta americana*, *J. Comp. Neurol.* 370, 35, 1996.

Distler, P.G. and Boeckh, J., Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, *Periplaneta americana*. II. Local multiglomerular interneurons, *J. Comp. Neurol.* 383, 529, 1997.

Malun, D., Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of *Periplaneta americana*: a double-labeling electron microscopic study, *Histochemistry* 96, 197, 1991.

Sun, X.J., Tolbert, L.P., and Hildebrand, J.G., Synaptic organisation of the uniglomerular projection neurons of the antennal lobe of the moth *Manduca sexta*: a laser scanning confocal and electron microscopic study, *J. Comp. Neurol.* 379, 2, 1997.

Hoskins, S.G., Homberg, U., Kingan, T.G., Christensen, T.A., and Hildebrand, J.G., Immunocytochemistry of GABA in the antennal lobes of the sphinx moth *Manduca sexta*, *Cell Tissue Res.* 244, 243, 1986.

Homberg, U., Christensen, T.A., and Hildebrand, J.G., Structure and function of the deutocerebrum in insects, *Annu. Rev. Entomol.* 34, 477, 1989.

Hansson, B.S., Christensen, T.A., and Hildebrand, J.G., Functionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx moth *Manduca sexta*, *J. Comp. Neurol.* 312, 264, 1991.

Hansson, B.S., Ljungberg, H., Hallberg, E., and Löfstedt, C., Functional specialization of olfactory glomeruli in a moth, *Science* 256, 1313, 1992.

Hansson, B.S., Almaas, T.J., and Anton, S., Chemical communication in heliothine moths. V. Antennal lobe projection patterns of pheromone-detecting olfactory receptor neurons in the male *Heliothis virescens* (Lepidoptera: Noctuidae), *J. Comp. Physiol. A* 177, 535, 1995.

Anton, S. and Hansson, B.S., Sex pheromone and plant-associated odour processing in antennal lobe interneurons of male *Spodoptera littoralis* (Lepidoptera: Noctuidae), *J. Comp. Physiol. A* 176, 773, 1995.

Anton, S., Löfstedt, C., and Hansson, B.S., Central nervous processing of sex pheromones in two strains of the European corn borer, *Ostrinia nubilalis* (Lepidoptera: Pyralidae), *Exp. Biol.* 200, 1073, 1997.

Ochieng, S.A., Anderson, P., and Hansson, B.S., Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in *Spodoptera littoralis* (Lepidoptera: Noctuidae), *Tissue Cell* 27, 221, 1995.

Vickers, N.J., Christensen, T.A., and Hildebrand, J.G., Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifiable glomeruli, *J. Comp. Neurol.* 400, 35, 1998.

Berg, B., Almaas, T.J., Bjaalie, J., and Mustaparta, H., The macroglomerular complex of the antennal lobe in the tobacco budworm moth *Heliothis virescens*: specified subdivision in four compartments according to information about biologically significant compounds, *J. Comp. Physiol. A* 183, 669, 1998.

Gao, Q., Yuan, B., and Chess, A., Convergent projections of *Drosophila* olfactory neurons to specific glomeruli in the antennal lobe, *Nat. Neurosci.* 3, 780, 2000.

Vosshall, L.B., Wong, A.M., and Axel, R., An olfactory sensory map in the fly brain, *Cell* 102, 147, 2000.

Joerges, J., Küttner, A., Galizia, C.G., and Menzel, R., Representations of odours and odour mixtures visualized in the honeybee brain, *Nature* 387, 285, 1997.

Galizia, C.G., Joerges, J., Kuettner, A., Faber, T., and Menzel, R., A semi-in-vivo preparation for optical recording of the insect brain, *J. Neurosci. Methods* 76, 61, 1997.

Galizia, C.G., Nägler, K., Hölldobler, B., and Menzel, R., Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (*Apis mellifera*), *Eur. J. Neurosci.* 10, 2964, 1998.

Galizia, C.G., Sachse, S., Rappert, A., and Menzel, R., The glomerular code for odor representation is species specific in the honeybee *Apis mellifera*, *Nat. Neurosci.* 2, 473, 1999.

Sachse, S., Rappert, A., and Galizia, C.G., The spatial representation of chemical structures in the antennal lobe of honeybees: steps toward the olfactory code, *Eur. J. Neurosci.* 11, 3970, 1999.

Galizia, C.G., Sachse, S., and Mustaparta, H., Calcium responses to pheromones and plant odours in the antennal lobe of the male and female moth *Heliothis virescens*, *J. Comp. Physiol. A* 186, 1049, 2000.

Carlsson, M.A., Galizia, C.G., and Hansson, B.S., Spatial representation of odours in the antennal lobe of the moth *Spodoptera littoralis* (Lepidoptera: Noctuidae), *Chem. Senses* 27, 231, 2002.

Hansson, B.S., Carlsson, M.A., and Kalinová, B., Olfactory activation patterns in the antennal lobe of the sphinx moth, *Manduca sexta*, *J. Comp. Physiol. A* 189, 301, 2003.

Carlsson, M.A., Baker, T.C., and Hansson, B.S., *unpublished observation*.

Todd, J.L. and Baker, T.C., Antennal lobe partitioning of behaviorally active odors in female cabbage looper moths, *Naturwissenschaften* 83, 324, 1996.

Meijerink, J., Carlsson, M.A., and Hansson, B.S., Spatial representation of odorant structure in the moth antennal lobe: a study of structure-response relationships at low doses, *J. Comp. Neurol.* 467, 11, 2003.

Daly, K.C., Chandra, S., Durtschi, M.L., and Smith, B.H., The generalization of an olfactory-based conditioned response reveals unique but overlapping odour representations in the moth *Manduca sexta*, *J. Exp. Biol.* 204, 3085, 2001.

Lee, J.K. and Altner, H., Primary sensory projections of the labial palp-pit organ of *Pieris rapae* L. (Lepidoptera: Pieridae), *Int. J. Insect Morphol. Embryol.* 15, 439, 1986.

Todd, J.L. and Baker, T.C., Function of peripheral olfactory organs, in *Insect Olfaction*, Hansson, B.S., Ed., Springer, Berlin, 1999, p. 67.

Carlsson, M.A. and Hansson, B.S., Dose-response characteristics of glomerular activity in the moth antennal lobe, *Chem. Senses* 28, 269, 2003.

Siddiqi, O., Olfactory neurogenetics of *Drosophila*, in *Genetics: New Frontiers*, vol. III, Chopra, V.L., Joshi, B.C., Sharma, R.P., and Bawal, H.C., Eds., Oxford University Press & IBH, London, 1983, p. 243.

Stensmyr, M.C., Dekker, T., and Hansson, B.S., Evolution of the olfactory code in the *Drosophila melanogaster* subgroup, *Proc. R. Soc. Lond. B Biol. Sci.* 270, 2333, 2003.

Stopfer, M., Wehr, M., MacLeod, K., and Laurent, G., Neural dynamics, oscillatory synchronization, and odour codes, in *Insect Olfaction*, Hansson, B.S., Ed., Springer, Berlin, 1999, p. 163.

Laurent, G., Olfactory network dynamics and the coding of multidimensional signals, *Nat. Rev. Neurosci.* 3, 884, 2002.

Adrian, E.D., The electric activity of the olfactory bulb, *Electroencephalogr. Clin. Neurophysiol.* 2, 377, 1950.

Adrian, E.D., Sensory messages and sensation. The response of the olfactory organ to different smells, *Acta Physiol. Scand.* 29, 5, 1953.

Wehr, M. and Laurent, G., Relationship between afferent and central temporal patterns in the locust olfactory system, *J. Neurosci.* 19, 381, 1999.

Laurent, G. and Davidowitz, H., Encoding of olfactory information with oscillating neuronal assemblies, *Science* 265, 1872, 1994.

Wehr, M. and Laurent, G., Odour encoding by temporal sequences of firing in oscillating neural assemblies, *Nature* 384, 162, 1996.

MacLeod, K. and Laurent, G., Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies, *Science* 274, 976, 1996.

MacLeod, K., Backer, A., and Laurent, G., Who reads temporal information contained across synchronized and oscillatory spike trains?, *Nature* 395, 693, 1998.

Sachse, S. and Galizia, C.G., Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study, *J. Neurophysiol.* 87, 1106, 2002.

Hartline, H.K., Wagner, H.G., and MacNichol, E.F., The peripheral origin of nervous activity in the visual system, *Cold Spring Harbor Symp. Quant. Biol.* 17, 125, 1952.

Carlsson, M.A., Knüsel, P., Verschure, P.F.M.J., and Hansson, B.S., Spatio-temporal Ca^{2+} dynamics of moth olfactory projection neurons, *Eur J Neurosci.* 22, 647–657, 2005.

Stopfer, M., Jayaraman, V., and Laurent, G., Intensity versus identity coding in an olfactory system, *Neuron* 39, 991, 2003.

Ditzen, M., Evers, J.-F., and Galizia, C.G., Odor similarity does not influence the time needed for odor processing, *Chem. Senses* 28, 781, 2003.

Christensen, T.A., Pawlowski, V.M., Lei, H., and Hildebrand, J.G., Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles, *Nat. Neurosci.* 3, 927, 2000.

Lei, H., Christensen, T.A., and Hildebrand, J.G., Spatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe, *J. Neurosci.* 24, 11108, 2004.

Stopfer, M., Bhagavan, S., Smith, B.H., and Laurent, G., Impaired odour discrimination on desynchronization of odour-encoding neural assemblies, *Nature* 390, 70, 1997.

Kuwabara, M., Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, *Apis mellifica*, *J. Fac. Sci. Hokkaido Univ. Ser. V Zool.* 13, 458, 1957.

Bitterman, M.E., Menzel, R., Fietz, A., and Schäfer, S., Classical conditioning of proboscis extension in honeybees (*Apis mellifera*), *J. Comp. Psychol.* 97, 107, 1983.

Hansson, B.S. and Christensen, T.A., Functional characteristics of the antennal lobe, in *Insect Olfaction*, Hansson, B.S., Ed., Springer, Berlin, 1999, p. 125.

von Frisch, K., *The dance language and orientation of bees*, Harvard University Press, Cambridge, MA, 1967.

Menzel, R., Erber, J., and Masuhr, T., Learning and memory in the honeybee, in *Experimental Analysis of Insect Behaviour*, Barton-Browne, L., Ed., Springer, Berlin, Germany, 1974, p. 195.

Erber, J., Masuhr, T., and Menzel, R., Localization of short-term memory in the brain of the bee, *Apis mellifera*, *Physiol. Entomol.* 5, 343, 1980.

Hammer, M. and Menzel, R., Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees, *Learn. Mem.* 5, 146, 1998.

Sigg, D., Thompson, C.M., and Mercer, A.R., Activity-dependent changes to the brain and behavior of the honey bee, *Apis mellifera* (L.), *J. Neurosci.* 17, 7148, 1997.

Brown, S.M., Napper, R.M., Thompson, C.M., and Mercer, A.R., Stereological analysis reveals striking differences in the structural plasticity of two readily identifiable glomeruli in the antennal lobes of the adult worker honeybee, *J. Neurosci.* 22, 8514, 2002.

Devaud, J.-M., Acebes, A., and Ferrus, A., Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in *Drosophila*, *J. Neurosci.* 21, 6274, 2001.

Faber, T., Joerges, J., and Menzel, R., Associative learning modifies neural representations of odors in the insect brain, *Nat. Neurosci.* 2, 74, 1999.

Weidert, M., Galizia, C.G., and Menzel, R., Sensitization increases odor-evoked Ca^{2+} -signals in projection neurons of the honeybee, *Apis mellifera*, in *Proceedings of the 28th Göttingen Neurobiology Conference*, vol. 1, Elsner, N. and Kreutzberg, G.W., Eds., George Thieme, Stuttgart, 2001, p. 177.

Galizia, C.G., Kuttner, A., Joerges, J., and Menzel, R., Odour representation in the honeybee olfactory glomeruli shows slow temporal dynamics: an optical recording study using a voltage-sensitive dye, *J. Insect Physiol.* 46, 877, 2000.

Den Otter, C.J., Schuil, H.A., and Sander-van Oosten, A., Reception of host-plant odors and female sex pheromone in *Adoxophyes orana* (Lepidoptera: Tortricidae): electrophysiology and morphology, *Entomol. Exp. Appl.* 24, 370, 1978.

De Jong, R. and Visser, J.H., Specificity-related suppression of responses to binary mixtures in the olfactory receptors of the Colorado potato beetle, *Brain Res.* 447, 18, 1988.

Akers, R.P. and Getz, W.M., Response of olfactory receptor neurons in honeybees to odorants and their binary mixtures, *J. Comp. Physiol. A* 173, 169, 1993.

Getz, W.M. and Akers, R.P., Response of American cockroach (*Periplaneta americana*) olfactory receptors to selected alcohol odorants and their binary combinations, *J. Comp. Physiol. A* 180, 701, 1997.

Ochieng, S.A., Park, K.C., and Baker, T.C., Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male *Helicoverpa zea*, *J. Comp. Physiol. A* 188, 325, 2002.

Christensen, T.A., Mustaparta, H., and Hildebrand, J.G., Chemical communication in heliothine moths. II. Central processing of intraspecific and interspecific olfactory messages in the male corn earworm moth, *Helicoverpa zea*, *J. Comp. Physiol. A* 169, 259, 1991.

Raguso, R.A. and Willis, M.A., Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, *Manduca sexta*, *Anim. Behav.* 69, 407, 2005.

Chittka, L., Thomson, J.D., and Waser, N.M., Flower constancy, insect psychology, and plant evolution, *Naturwissenschaften* 86, 361, 1999.

Seeley, T.D., *The Wisdom of the Hive*, Harvard University Press, Cambridge, MA, 1996, p. 302.

Menzel, R., Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges und langzeitiges Behalten, *Z. Vergl. Physiol.* 60, 82, 1968.

Werner, A., Menzel, R., and Wehrhahn, C., Color constancy in the honeybee, *J. Neurosci.* 8, 156, 1988.

Backhaus, W., Color opponent coding in the visual system of the honeybee, *Vision Res.* 31, 1381, 1991.

Chittka, L., Shmida, A., Troje, N., and Menzel, R., Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera, *Vision Res.* 34, 1489, 1994.

Free, J.B., Effect of flower shapes and nectar guides on the behaviour of foraging honeybees, *Behaviour* 37, 269, 1970.

Rodriguez, I., Gumbert, A., Hempel de Ibarra, N., Kunze, J., and Giurfa, M., Symmetry is in the eye of the “ beholder ”: innate preference for bilateral symmetry in flower-naïve bumblebees, *Naturwissenschaften* 91, 374, 2004.

Kevan, P.G., Texture sensitivity in the life of honeybees, in *Neurobiology and Behavior of Honeybees*, Menzel, R. and Mercer, A., Eds., Springer, Berlin, 1987, p. 96.

Scheiner, R., Erber, J., and Page, R.E., Jr., Tactile learning and the individual evaluation of the reward in honey bees (*Apis mellifera* L.), *J. Comp. Physiol. A* 185, 1, 1999.

Wright, G.A., Skinner, B.D., and Smith, B.H., Ability of honeybee, *Apis mellifera*, to detect and discriminate odors of varieties of canola (*Brassica rapa* and *Brassica napus*) and snapdragon flowers (*Antirrhinum majus*), *J. Chem. Ecol.* 28, 721, 2002.

Raguso, R.A., Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement, *Curr. Opin. Plant Biol.* 7, 434, 2004.

von Frisch, K., *The Dance Language & Orientation of Bees*, Harvard University Press, Cambridge, MA, 1967, p. 566.

Real, L.A., Animal choice behavior and the evolution of cognitive architecture, *Science* 253, 980, 1991.

Stephens, D.W. and Krebs, J.R., *Foraging Theory*, Princeton University Press, Princeton, NJ, 1986, p. 247.

Hill, P.S.M., Wells, P.H., and Wells, H., Spontaneous flower constancy and learning in honey bees as a function of colour, *Anim. Behav.* 54, 615, 1997.

Menzel, R., Learning, memory and “ cognition ” in honey bees, in *Neurobiology of Comparative Cognition*, Kesner, R.P. and Olton, D.S., Eds., Erlbaum, Hillsdale, NJ, 1990, p. 237.

Michener, C.D., *The Bees of the World*, Johns Hopkins University Press, Baltimore, MD, 2000.

Buchmann, S.L. and Nabhan, G.P., *The Forgotten Pollinators*, Island Press, Washington, DC, 1995, p. 292.

Pavlov, I.P., *Conditioned Reflexes*, Oxford University Press, New York, 1927.

Pearce, J.M., *Animal Learning and Cognition*, 2nd ed., Psychology Press, Sussex, UK, 1997.

Bitterman, M.E., Incentive contrast in honey bees, *Science* 192, 380, 1976.

Rescorla, R.A. and Holland, P.C., Behavioral studies of associative learning in animals, *Annu. Rev. Psychol.* 33, 265, 1982.

Mackintosh, N.J., *The Psychology of Animal Learning*, Academic Press, London, 1974.

Rescorla, R.A., Behavioral studies of Pavlovian conditioning, *Annu. Rev. Neurosci.* 11, 329, 1988.

Hildebrand, J.G. and Shepherd, G.M., Mechanisms of olfactory discrimination: converging evidence for common principles across phyla, *Annu. Rev. Neurosci.* 20, 595, 1997.

Laurent, G., Olfactory network dynamics and the coding of multidimensional signals, *Nat. Rev. Neurosci.* 3, 884, 2002.

Bitterman, M.E., Comparative analysis of learning in honeybees, *Anim. Learn. Behav.* 24, 123, 1996.

Kuwabara, M., Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene (*Apis mellifera*), *J. Fac. Sci. Hokkaido Univ. Ser. VI Zool.* 13, 458, 1957.

Menzel, R. and Bitterman, M.E., Learning by honeybees in an unnatural situation, in *Neuroethology and Behavioral Physiology*, Huber, F. and Markl, H., Eds., Springer-Verlag, New York, 1983, p. 206.

Erber, J., Pribbenow, B., Bauer, A., and Kloppenburg, P., Antennal reflexes in the honeybee: tools for studying the nervous system, *Apidologie* 24, 283, 1993.

Smith, B.H. and Menzel, R., An analysis of variability in the feeding motor program of the honey bee: the role of learning in releasing a modal action pattern, *Ethology* 82, 68, 1989.

Smith, B.H. and Menzel, R., The use of electromyogram recordings to quantify odorant discrimination in the honey bee, *Apis mellifera*, *J. Insect Physiol.* 35, 369, 1989.

Smith, B.H., An analysis interaction in binary odorant mixtures, *Physiol. Behav.* 65, 397, 1998.

Hellstern, F., Malaka, R., and Hammer, M., Backward inhibitory learning in honeybees: a behavioral analysis of reinforcement processing, *Learn. Mem.* 4, 429, 1998.

Bitterman M.E., Menzel, R., Fietz, A., and Schäfer, S., Classical conditioning of proboscis extension in honeybees (*Apis mellifera*), *J. Comp. Physiol.* 97, 107, 1983.

Smith, B.H., Abramson, C.I., and Tobin, T.R., Conditional withholding of proboscis extension in honey bees (*Apis mellifera*) during discriminative punishment, *J. Comp. Psychol.* 105, 345, 1992.

Mackintosh, N.J., *Conditioning and Associative Learning*, Oxford University Press, New York, 1983.

Cardé, R.T. and Minks, A.K., *Insect Pheromone Research*, Chapman & Hall, New York, 1998.

Karban, R. and Baldwin, I.T., *Induced Responses to Herbivory*, University of Chicago Press, Chicago, 1997.

Murlis, J., Odor plumes and the signals they provide, in *Insect Pheromone Research*, Cardé, R. and Minks, A.K., Eds., Chapman & Hall, New York, 1997, p. 221.

Willis, M.A. and Arbas, E.A., Variability in odor-modulated flight by moths, *J. Comp. Physiol. A* 182, 191, 1998.

Daly, K.C. and Figueiredo, A.J., Habituation of sexual response in *Heliothis* moths, *Physiol. Entomol.* 25, 180, 2000.

Smith, B.H., Recognition of female kin by male bees through olfactory signals, *Proc. Natl. Acad. Sci. USA* 80, 4551, 1983.

Thompson, R.F. and Spencer, W.A., Habituation: a model phenomenon for the study of substrates of behavior, *Psychol. Rev.* 73, 16, 1966.

Peeke, H.V.S., and Petrinovich, L., *Habituation, Sensitization, and Behavior*, Academic Press, Orlando, FL, 1984.

Ayasse, M., Schiestl, F.P., Paulus, H.F., Ibarra, F., and Francke, W., Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals, *Proc. R. Soc. Lond. B Biol. Sci.* 270, 517, 2003.

Gemeno, C., Lutfallah, A.F., and Haynes, K.F., Pheromone blend variation and cross-attraction among populations of the black cutworm moth (Lepidoptera: Noctuidae), *Ann. Entomol. Soc. Am.* 93, 1322, 2000.

Daly, K.C. and Smith, B.H., Associative olfactory conditioning of the moth, *Manduca sexta*, *J. Exp. Biol.* 203, 2025, 2000.

Daly K.C., Chandra, S.B.C., Durtschi, M.L., and Smith, B.H., The generalization of olfactory-based conditioned response reveals unique but overlapping odour representations in the moth, *Manduca sexta*, *J. Exp. Biol.* 204, 3085, 2001.

Daly, K.C., Durtschi, M.L., and Smith, B.H., Olfactory-based discrimination learning in the moth, *Manduca sexta*, *J. Insect Physiol.* 47, 375, 2001.

Kessler, A. and Baldwin, I.T., Defensive function of herbivore-induced plant volatile emissions in nature, *Science* 291, 2141, 2001.

Kessler, A., Halitschke, R., and Baldwin, I.T., Silencing the jasmonate cascade: induced plant defenses and insect populations, *Science* 305, 665, 2004.

Hammer, M. and Menzel, R., Learning and memory in the honeybee, *J. Neurosci.* 15, 1617, 1995.

Smith, B.H., Merging mechanism and adaptation: learning, generalization, and the control of behavior, in *Insect Learning: Ecological and Evolutionary Perspectives*, Lewis, A.C. and Papaj, D.R., Eds., Chapman & Hall, New York, 1993, p. 126.

Shepherd, G.M., Computational structure of the olfactory system, in *Olfaction: A Model System for Computational Neuroscience*, Davis, J.L. and Eichenbaum, H., Eds., MIT Press, Cambridge, MA, 1991, p. 3.

Belluscio, L. and Katz, L.C., Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs, *J. Neurosci.* 21, 2113, 2001.

Leon, M. and Johnson, B.A., Olfactory coding in the mammalian olfactory bulb, *Brain Res. Rev.* 42, 23, 2003.

Daly, K.S., Wright, G.A., and Smith, B.H., Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth *Manduca sexta*, *J. Neurophysiol.* 92, 236, 2004.

Vareschi, E., Duftunterscheidung bei der Honigbiene. Einzelzell-Ableitungen und Verhaltensreaktionen, *Z. Vergl. Physiol.* 75, 143, 1971.

Ditzen, M., Evers, J.F., and Galizia, C.G., Odor similarity does not influence the time needed for odor processing, *Chem. Senses* 28, 781, 2003.

Shephard, R.N., Toward a universal law of generalization for psychological science, *Science* 237, 1317, 1987.

Wright, G.A. and Smith, B.H., Variation in complex olfactory stimuli and its influence on odour recognition, *Proc. R. Soc. Lond. B* 271, 147, 2004.

Wright, G.A. and Smith, B.H., Different thresholds for detection and discrimination of odors in the honeybee (*Apis mellifera*), *Chem. Senses* 29, 127, 2004.

Keasar, T., The spatial distribution of nonrewarding artificial flowers affects pollinator attraction, *Anim. Behav.* 60, 639, 2000.

Shafir, S., Wiegmann, D.D., Smith, B.H., and Real, L.A., Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward, *Anim. Behav.* 57, 1055, 1999.

Chandra, S.B.C., Hosler, J.S., and Smith, B.H., Heritable variation for latent inhibition and its correlation to reversal learning in the honey bee, *Apis mellifera*, *J. Comp. Psychol.* 114, 86, 2000.

Wright, G.A., Lutmerding, A., Dudareva, N., and Smith, B.H., Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honey bees (*Apis mellifera*), *J. Comp. Physiol. A* 191, 105, 2005.

Shields, V.D. and Hildebrand, J.G., Responses of a population of antennal olfactory receptor cells in the female moth *Manduca sexta* to plant-associated volatile organic compounds, *J. Comp. Physiol. A* 186, 1135, 2001.

Atema, J., Borroni, P., Johnson, B., Voigt, R., and Handrich, L., Adaptation and mixture interaction in chemoreceptor cells: mechanisms for diversity and contrast enhancement, in *Perception of Complex Smells and Tastes*, Laing D.G., Ed., Academic Press, Marrickville, NSW, Australia, 1989, p. 83.

Stopfer, M., Jayaraman, V., and Laurent, G., Intensity versus identity coding in an olfactory system, *Neuron* 39, 991, 2003.

Sachse, S. and Galizia, C.G., The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation, *Eur. J. Neurosci.* 18, 2119, 2003.

Murlis, J. and Jones, C.D., Fine-scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources, *Physiol. Entomol.* 6, 71, 1981.

Chandra, S.B.C. and Smith, B.H., An analysis of synthetic processing of odor mixtures in the honey bee (*Apis mellifera*), *J. Exp. Biol.* 201, 3113, 1998.

Deisig, N., Lachnit, H., Sandoz, J.C., Lober, K., and Giurfa, M., A modified version of the unique cue theory accounts for olfactory compound processing in honeybees, *Learn. Mem.* 10, 199, 2003.

Jinks, A. and Laing, D.G., The analysis of odor mixtures by humans: evidence for a configurational process, *Physiol. Behav.* 72, 51, 2001.

Hudson, R., From molecule to mind: the role of experience in shaping olfactory function, *J. Comp. Physiol. A* 185, 297, 1999.

Smith, B.H., An analysis of blocking in binary odorant mixtures: an increase but not a decrease in intensity of reinforcement produces unblocking, *Behav. Neurosci.* 111, 57, 1997.

Rudy, J.W. and Sutherland, R.J., Configural and elemental associations and the memory coherence problem, *J. Cogn. Neurosci.* 4, 208, 1992.

Galizia, C.G. and Menzel, R., The role of glomeruli in the neural representation of odours: results from optical recording studies, *J. Insect Physiol.* 47, 115, 2001.

Muller, D., Gerber, B., Hellstern, F., Hammer, M., and Menzel, R., Sensory preconditioning in honeybees, *J. Exp. Biol.* 203, 1351, 2000.

Smith, B.H. and Cobey, S., The olfactory memory of honey bee, *Apis mellifera*: II. Blocking between odorants in binary mixtures, *J. Exp. Biol.* 195, 91, 1994.

Couvillon, P.A., Arakaki, L., and Bitterman, M.E., Intramodal blocking in honeybees, *Anim. Learn. Behav.* 25, 277, 1997.

Couvillon, P.A., Campos, A.C., Bass, T.D., and Bitterman, M.E., Intermodal blocking in honeybees, *Q. J. Exp. Psychol. B* 54, 369, 2001.

Hosler, J.S. and Smith, B.H., Blocking and the detection of odor components in blends, *J. Exp. Biol.* 203, 2797, 2000.

Blaser, R.E., Couvillon, P.A., and Bitterman, M.E., Backward blocking in honeybees, *Q. J. Exp. Psychol. B* 57, 349, 2004.

Thorn, R.S. and Smith, B.H., The olfactory memory of the honeybee, *Apis mellifera* III. Bilateral sensory input is necessary for induction and expression of olfactory blocking, *J. Exp. Biol.* 200, 2045, 1997.

Gerber, B. and Ullrich, J., No evidence for olfactory blocking in honeybee classical conditioning, *J. Exp. Biol.* 202, 1839, 1999.

Smith, B.H., The role of attention in learning about odorants, *Biol. Bull. MBL* 191, 76, 1996.

Linster, C. and Smith, B.H., A computational model of the response of honey bee antennal lobe circuitry to odor blends: overshadowing, blocking and unblocking can arise from lateral inhibition, *Behav. Brain Res.* 87, 1, 1997.

Borisuk, A. and Smith, B.H., Odor interactions and learning in a model of the insect antennal lobe, *Neurocomputing* 1041, 58, 2004.

Jakobsen, H.B. and Olsen, C.E., Influence of climatic factors on rhythmic emission of volatiles from *Trifolium repens* L. flowers in situ, *Planta* 192, 365, 1994.

Pott, M.B., Pichersky, E., and Piechulla, B., Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of *Stephanotis floribunda*, *J. Plant Physiol.* 159, 925, 2002.

Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., Bonham, C., and Wood, K., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, *Plant Cell* 12, 949, 2000.

Schiestl, F.P., Ayasse, M., Paulus, H.F., Erdmann, D., and Francke, W., Variation of floral scent emission and postpollination changes in individual flowers of *Ophrys sphegodes* subsp. *sphegodes*, *J. Chem. Ecol.* 23, 2281, 1997.

Pham-Delgabe, M.H., Bailez, O., Blight, M.M., Masson, C., Picard-Nizou, A.L., and Wadhams, L.J., Behavioral discrimination of oilseed rape volatiles by the honeybee *Apis mellifera* L., *Chem. Senses* 18, 483, 1993.

Pham-Delgabe, M.H., Blight, M.M., Kerguelen, V., Le Métayer, M., Marion-Poll, F., Sandoz, J.C., and Wadhams, L.J., Discrimination of oilseed rape volatiles by the honeybee: combined chemical and biological approaches, *Entomol. Exp. Appl.* 83, 87, 1997.

Andersson, S. and Dobson, H.E., Behavioral forging responses by the butterfly *Heliconius melpomene* to *Lantana camara* floral scent, *J. Chem. Ecol.* 29, 2303, 2003.

Reinhard, J., Srinivasan, M.V., Guez, D., and Zhang, S.W., Floral scents induce recall of navigational and visual memories in honeybees, *J. Exp. Biol.* 207, 4371, 2004.

Giurfa, M., Zhang, S., Jenett, A., Menzel, R., and Srinivasan, M.V., The concepts of "sameness" and "difference" in an insect, *Nature* 410, 930, 2001.

Eisthen H.L., Why are olfactory systems of different animals so similar?, *Brain Behav. Evol.* 59, 273, 2002.

Strausfeld, N.J. and Hildebrand, J.G., Olfactory systems: common design, uncommon origins?, *Curr. Opin. Neurobiol.* 9, 634, 1999.

Vogt, R.G., Prestwich, G.D., and Lerner, M.R., Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects, *J. Neurobiol.* 22, 74, 1991.

Pelosi, P., Odorant-binding proteins, *Crit. Rev. Biochem. Mol. Biol.* 29, 199, 1994.

Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J., and Carlson, J.R., A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in *Drosophila*, *Neuron* 22, 327, 1999.

Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R., A spatial map of olfactory receptor expression in the *Drosophila* antenna, *Cell* 96, 725, 1999.

Getz, W.M. and Akers, R.P., Honeybee olfactory sensilla behave as integrated processing units, *Behav. Neural. Biol.* 61, 191, 1994.

Getz, W.M. and Akers, R.P., Partitioning non-linearities in the response of honey bee olfactory receptor neurons to binary odors, *Biosystems* 34, 27, 1995.

Vosshall, L.B., Wong, A.M., and Axel, R., An olfactory sensory map in the fly brain, *Cell* 102, 147, 2000.

Sachse, S. and Galizia, C.G., Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study, *J. Neurophysiol.* 87, 1106, 2002.

Faber, T., Joerges, J., and Menzel, R., Associative learning modifies neural representations of odors in the insect brain, *Nat. Neurosci.* 2, 74, 1999.

Daly, K.C., Christensen, T.A., Lei, H., Smith, B.H., and Hildebrand, J.G., Learning modulates the ensemble representations for odors in primary olfactory networks, *Proc. Natl. Acad. Sci. USA* 101, 10476, 2004.

Farooqui, T., Robinson, K., Vaessin, H., and Smith, B.H., Modulation of early olfactory processing by an identified octopaminergic reinforcement pathway in the honeybee, *J. Neurosci.* 23, 5370, 2003.

Plant Species Biology 14(2), 1999.

Plant Physiology 135(4), 2004.

Hansson, B.S., *Insect Olfaction*, Springer-Verlag, Berlin, 1999.

Kevan, P.G., Floral colours through the insect eye: what they are and what they mean, in *Handbook of Experimental Pollination Biology*, Jones, C.E. and Little, R.J., Eds., Van Nostrand-Reinhold, New York, 1983, p. 3.

Menzel, R. and Shmida, A., The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a case study, *Biol. Rev.* 68, 81, 1993.

Waser, N.M., Chittka, L., Price, M.V., Williams, N.M., and Ollerton, J., Generalization in pollination systems and why it matters, *Ecology* 77, 1043, 1996.

Raguso, R.A., Why do flowers smell? The chemical ecology of fragrance-driven pollination, in *Advances in Insect Chemical Ecology*, Cardé, R.T. and Millar, J.G., Eds., Cambridge University Press, Cambridge, 2004, p. 151.

Metcalf, R.L., Plant volatiles as insect attractants, *CRC Crit. Rev. Plant Sci.* 5, 251, 1987.

Matile, P. and Altenburger, R., Rhythms of fragrance emission in flowers, *Planta* 174, 242, 1988.

Barkman, T.J., Evidence for positive selection on the floral scent gene isoeugenol-methyltransferase, *Mol. Biol. Evol.* 20, 168, 2003.

Motten, A.F. and Stone, J.L., Heritability of stigma position and the effect of stigma-anther separation on outcrossing in a predominantly self-fertilizing weed, *Datura stramonium* (Solanaceae), *Am. J. Bot.* 87, 339, 2000.

Raguso, R.A., Floral scent, olfaction and scent-driven foraging behavior, in *Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, Cambridge, 2001, p. 83.

Herrera, C.M., Selection on floral morphology and environmental determinants of fecundity in a hawk moth-pollinated violet, *Ecol. Monogr.* 63, 251, 1993.

Fineblum, W.L. and Rausher, M.D., Do floral pigmentation genes also influence resistance to enemies? The W locus in *Ipomoea purpurea*, *Ecology* 78, 1446, 1997.

Armbruster, W.S., Can indirect selection and genetic context contribute to trait diversification? A transition-probability study of blossom colour evolution in two genera, *J. Evol. Biol.* 15, 468, 2002.

Ackerman, J.D., Melendez-Ackerman, E.J., and Salguero-Faria J. Variation in pollinator abundance and selection on fragrance phenotypes in an epiphytic orchid, *Am. J. Bot.* 84, 1383, 1997.

Pichersky, E. and Gershenson, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, *Curr. Opin. Plant Biol.* 5, 237, 2002.

Levin, R.A., McDade, L.A., and Raguso, R.A., The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae, *Syst. Biol.* 52, 334, 2003.

Theis, N. and Lerdau, M., The evolution of function in plant secondary metabolites, *Int. J. Plant Sci.* 164, S93, 2003.

Bergström, G., Role of volatile chemicals in *Ophrys*-pollinator interactions, *Biochemical Aspects of Plant and Animal Coevolution*, Harborne, G., Ed., Academic Press, New York, 1978, p. 207.

Kunze, J. and Gumbert, A., The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems, *Behav. Ecol.* 12, 447, 2001.

Gardener, M.C. and Gillman, M.P., The taste of nectar—a neglected area of pollination ecology, *Oikos* 98, 552, 2002.

Williams, N.H., Floral fragrances as cues in animal behavior, in *Handbook of Experimental Pollination Biology*, Jones, C.E. and Little, R.J., Eds., Van Nostrand-Reinhold, New York, 1983, p. 51.

Dobson, H.E.M., Floral volatiles in insect biology, in *Insect-Plant Interactions*, vol. 5, Bernays, E., Ed., CRC Press, Boca Raton, FL, 1994, p. 47.

Sprengel, F.C., *Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen*, Englemann, Leipzig, 1894, p. 1793.

Weiss, M.R., Floral colour changes as cues for pollinators, *Nature* 354, 227, 1991.

Lunau, K., Innate recognition of flowers by bumblebees: orientation of antennae to visual stamen signals, *Can. J. Zool.* 70, 2139, 1992.

Dafni, A. and Kevan, P.G., Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance, *Bot. J. Linn. Soc.* 120, 371, 1996.

Johnson, S.D. and Andersson, S., A simple field method for manipulating ultraviolet reflectance of flowers, *Can. J. Bot.* 80, 1325, 2002.

Dobson, H.E.M., Groth, I., and Bergström, G., Pollen advertisement: chemical contrasts between whole-flower and pollen odors, *Am. J. Bot.* 83, 877, 1996.

Raguso, R.A., Why are some floral nectars scented?, *Ecology* 85, 1486, 2004.

Kaiser, R., *The Scent of Orchids*, Elsevier Science, Amsterdam, 1993.

Kite, G.C. et al. Inflorescence odours and pollinators of *Arum* and *Amorphophallus* (Araceae), in *Reproductive Biology*, Owens, S.J. and Rudall, P.J., Eds., Royal Botanic Gardens, Kew, UK, 1998, p. 295.

Delpino, F., Ulteriori osservazioni e considerazioni sulla dicogamia nel regno vegetale. 2 (IV). Delle piante zoidifile, *Atti Soc. Ital. Sci. Nat.* 16, 151, 1874.

Kerner von Marilaum, A., *The Natural History of Plants; Their Forms, Growth, Reproduction and Distribution*, Blackie and Son, London, 1895.

Harper, R., Bate-Smith, E.C., and Land, D.G., *Odour Description and Odour Classification*, American Elsevier, New York, 1968.

Joulain, D., The composition of the headspace from fragrant flowers: further results, *Flavour Fragr. J.* 2, 149, 1987.

Kaiser, R., Trapping, investigation and reconstitution of flower scents, in *Perfumes: Art, Science and Technology*, Müller, P.M. and Lamparsky, D., Eds., Elsevier Applied Science, London, 1991, p. 213.

Amoore, J.E., Forrester, L.J., and Butterly, R.G., Specific anosmia to 1-pyrroline: the spermous primary odor, *J. Chem. Ecol.* 1, 299, 1975.

Tollsten, L., Knudsen, J.T., and Bergström, G., Floral scent in generalistic *Angelica* (Apiaceae)—an adaptive character?, *Biochem. Syst. Ecol.* 22, 161, 1994.

Borg-Karlson, A.-K., Valterová, I., and Nilsson, L.A., Volatile compounds from flowers of six species in the family Apiaceae: bouquets for different pollinators?, *Phytochemistry* 35, 111, 1994.

Robacker, D.C., Roles of putrescine and 1-pyrroline in attractiveness of technical-grade putrescine to the Mexican fruit fly (Diptera: Tephritidae), *Fla. Entomol.* 84, 679, 2001.

Galen, C., Flowers and enemies: predation by nectar thieving ants in relation to variation in floral form of an alpine wildflower, *Polemonium viscosum*, *Oikos* 85, 426, 1999.

Campbell, D.R., Measurements of selection in a hermaphroditic plant: variation in male and female pollination success, *Evolution* 43, 318, 1989.

Conner, J.K., Understanding natural selection: an approach integrating selection gradients, multiplicative fitness components and path analysis, *Ethol. Ecol. Evol.* 8, 387, 1996.

Miyake, T. and Yafuso, M., Floral scents affect reproductive success in fly-pollinated *Alocasia odora* (Araceae), *Am. J. Bot.* 90, 370, 2003.

Clements, F.E. and Long, F.L., *Experimental Pollination: An Outline of the Ecology of Flowers and Insects*, Carnegie Institute, Washington, DC, 1923.

Kullenberg, B., Field experiments with chemical sexual attractants on aculeate hymenopteran males I, *Zool. Bidrag Uppsala* 31, 253, 1956.

Nilsson, L.A. et al. Ixoroid secondary pollen presentation and pollination by small moths in the Malagasy treelet *Ixora platythyrsa* (Rubiaceae), *Plant Syst. Evol.* 170, 161, 1990.

Knudsen, J.T., Andersson, S., and Bergman, P., Floral scent attraction in *Geonoma macrostachys*, an understorey palm of the Amazonian rain forest, *Oikos* 85, 409, 1999.

Knoll, F., Insekten und Blumen IV. Die *Arum*-Blütenstände und ihre Besucher, *Abhandlungen der Kaiserlich-Königlichen Zoologisch-botanischen Gesellschaft in Wien* 12, 383, 1926.

Gottsberger, G. and Silberbauer-Gottsberger, I., Olfactory and visual attraction of *Erioscelis emarginata* (Cyclocephalini, Dynastinae) to the inflorescences of *Philodendron selloum* (Araceae), *Biotropica* 23, 23, 1991.

Hossaert-McKey, M., Gibernau, M., and Frey, J.E., Chemosensory attraction of fig wasps to substances produced by receptive figs, *Entomol. Exp. Appl.* 70, 185, 1994.

Roy, B.A. and Raguso, R.A., Olfactory vs. visual cues in a floral mimicry system, *Oecologia* 109, 414, 1997.

Raguso, R.A. and Willis, M.A., Synergy between visual and olfactory cues in nectar feeding by naïve hawkmoths, *Manduca sexta*, *Anim. Behav.* 63, 685, 2002.

Raguso, R.A. and Willis, M.A., Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, *Manduca sexta*, *Anim. Behav.* 65, 407, 2004.

Ware, A.B. and Compton, S.G., Breakdown of pollinator specificity in an African fig tree, *Biotropica* 24, 544, 1992.

Meagher, R.L., Jr., Trapping noctuid moths with synthetic floral volatile lures, *Entomol. Exp. Appl.* 103, 219, 2002.

Mikich, S.B., Bianconi, G.V., Maia, B.H., and Teixeira, S.D., Attraction of the fruit eating bat *Carollia perspicillata* to *Piper gaudichaudianum* essential oil, *J. Chem. Ecol.* 29, 2379, 2003.

Irwin, R.E., Brody, A.K., and Waser, N.M., The impact of floral larceny on individuals, populations and communities, *Oecologia* 129, 161, 2001.

Plepy, D., Ibarra, F., Francke, W., and Lofstedt, C., Odour-mediated nectar foraging in the silver Y moth, *Autographa gamma* (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles, *Oikos* 99, 75, 2002.

Cook, S.M., Bartlet, E., Murray, D.A., and Williams, I.H., The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers, *Entomol. Exp. Appl.* 104, 43, 2002.

Dufaÿ, M., Hossaert-McKey, M., and Anstett, M.C., When leaves act like flowers: how dwarf palms attract their pollinators, *Ecol. Lett.* 6, 28, 2003.

Dobson, H.E.M. et al. Scent as an attractant, in *Practical Pollination Biology*, Dafni, A. and Kevan, P.G., Eds., Enviroquest, Cambridge, Ontario, 2005.

Barth, F.G., *Insects and Flowers: The Biology of a Partnership*, Princeton University Press, Princeton, NJ, 1991.

Brantjes, N.B.M., Senses involved in the visiting of flowers by *Cucullia umbratica* (Noctuidae: Lepidoptera), *Entomol. Exp. Appl.* 20, 1, 1976.

Marden, J.H., Remote perception of floral nectar by bumblebees, *Oecologia* 64, 232, 1984.

Kearns, C.A. and Inouye, D.W., *Techniques for pollination biologists*, University Press of Colorado, Niwot, CO, 1993.

Dafni, A., *Pollination Ecology: A Practical Approach*, Oxford University Press, Oxford, 1993.

Waser, N.M. and Price, M.V., Pollinator behaviour and natural selection for flower colour in *Delphinium nelsonii*, *Nature* 302, 422, 1983.

Wilson, P., Selection for pollination success and the mechanical fit of *Impatiens* flowers around bumblebee bodies, *Biol. J. Linn. Soc.* 55, 355, 1995.

Johnson, S.D. and Steiner, K.E., Long-tongued fly pollination and evolution of floral spur length in the *Disa draconis* complex (Orchidaceae), *Evolution* 51, 45, 1997.

Johnson, S.D. and Midgley, J.J., Fly pollination of *Gorteria diffusa* (Asteraceae) and a possible mimetic function for dark spots on the capitulum, *Am. J. Bot.* 84, 429, 1997.

Vogel, S., Evolutionary shifts from reward to deception in pollen flowers, in *The Pollination of Flowers by Insects*, Richards, A.J., Ed., Academic Press, London, 1978, p. 9.

D'Arcy, W.G., D'Arcy, N.S., and Keating, R.C., Scented anthers in the Solanaceae, *Rhodora* 92, 50, 1990.

Dobson, H.E.M., Bergström, G., and Groth, I., Differences in fragrance chemistry between flower parts of *Rosa rugosa* Thunb. (Rosaceae), *Isr. J. Bot.* 39, 143, 1990.

Dobson, H.E.M. and Bergström, G., The ecology and evolution of pollen odors, *Plant Syst. Evol.* 222, 63, 2000.

Bergström, G., Dobson, H.E.M., and Groth, I., Spatial fragrance patterns within the flowers of *Ranunculus acris* (Ranunculaceae), *Plant Syst. Evol.* 195, 221, 1995.

Dobson, H.E.M., Danielson, E.M., and van Wesep, I.D., Pollen odor chemicals as modulators of bumble bee foraging on *Rosa rugosa* Thunb. (Rosaceae), *Plant Species Biol.* 14, 153, 1999.

Patt, J.M., French, J.C., Schal, C., Lech, J., and Hartman, T.G., The pollination biology of Tuckahoe, *Peltandra virginica* (Araceae), *Am. J. Bot.* 82, 1230, 1995.

Patt, J.M., Hartman, T.G., Creekmore, W., Elliott, J., Schal, C., Leck, J., and Rosen, R.T., The floral odor of *Peltandra virginica* contains novel trimethyl-2,5-dioxabicyclo[3.2.1.]nonanes, *Phytochemistry* 31, 487, 1992.

de L. Nogueira, P.C., Bitrich, V., Shepherd, G.J., Lopes, A.V., and Marsaioli, A.J., The ecological and taxonomic importance of flower volatiles of *Clusia* species (Guttiferae), *Phytochemistry* 56, 443, 2001.

Ashman, T.L., Cole, D.H., Bradburn, M., Blaney, B., and Raguso, R.A., The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant, *Ecology* 86, 2099, 2005.

Cunningham, J.P., Moore, C.J., Zalucki, M.P., and West, S.A., Learning, odour preference and flower foraging in moths, *J. Exp. Biol.* 207, 87, 2004.

Manning, A., Some aspects of the foraging behaviour of bumble-bees, *Behaviour* 9, 164, 1956.

Odell, E., Raguso, R.A., and Jones, K.N., Bumblebee foraging responses to variation in floral scent and color in snapdragons (*Antirrhinum*: Scrophulariaceae), *Am. Midl. Nat.* 142, 257, 1999.

Galen, C. and Kevan, P.G., Bumblebee foraging and floral scent dimorphism: *Bombus kirbyellus* Curtis (Hymenoptera: Apidae) and *Polemonium viscosum* Nutt. (Polemoniaceae), *Can. J. Zool.* 61, 1207, 1983.

Jones, K.N., Analysis of pollinator foraging: tests for non-random behaviour, *Funct. Ecol.* 11, 255, 1997.

Baldwin, I.T., Preston, C.A., Euler, M.A., and Gorham, D., Patterns and consequences of benzyl acetone floral emissions from *Nicotiana attenuata* plants, *J. Chem. Ecol.* 23, 2327, 1997.

Euler, M.A. and Baldwin, I.T., The chemistry of defense and appressory in the corollas of *Nicotiana attenuata*, *Oecologia* 107, 102, 1996.

Henning, J.A., Peng, Y.S., Montague, M.A., and Teuber, L.R., Honey bee (Hymenoptera: Apidae) behavioral responses to primary alfalfa (Rosales: Fabaceae) floral volatiles, *J. Econ. Entomol.* 85, 233, 1992.

Real, L.A., Uncertainty and pollinator-plant interactions: the foraging behavior of bees and wasps on artificial flowers, *Ecology* 62, 20, 1981.

Nishida, R., Shelly, T.E., and Kaneshiro, K., Acquisition of female-attracting fragrance by males of oriental fruit fly from a Hawaiian lei flower, *Fagraea berteriana*, *J. Chem. Ecol.* 23, 2275, 1997.

Winter, Y. and von Helversen, O., Bats as pollinators: foraging energetics and floral adaptations, in *Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, Cambridge, 2001, p. 148.

Borg-Karlson, A.-K., Chemical and ethological studies of pollination in the genus *Ophrys* (Orchidaceae), *Phytochemistry* 29, 1359, 1990.

Gibernau, M. and Hossaert-McKey, M., Are olfactory signals sufficient to attract fig pollinators?, *Ecoscience* 5, 306, 1998.

Andersson, S., Foraging responses in the butterfly *Inachis io*, *Aglais urticae* (Nymphalidae) and *Gonepteryx rhamni* (Pieridae) to floral scents, *Chemoecology* 13, 1, 2003.

Tinbergen, N., Social releasers and the experimental method required for their study, *Wilson Bull.* 60, 5, 1948.

Schiestl, F.P., Peakall, R., Mant, J.G., Ibarra, F., Schulz, C., Franke, S., and Francke, W., The chemistry of sexual deception in an orchid-wasp pollination system, *Science* 302, 437, 2003.

Schiestl, F.P., Floral evolution and pollinator mate choice in a sexually deceptive orchid, *J. Evol. Biol.* 17, 67, 2004.

Harder, L.D. and Barrett, S.C.H., Mating cost of large floral displays in hermaphrodite plants, *Nature* 373, 512, 1995.

Ohashi, K. and Yahara, T. Behavioral responses of pollinators to variation in floral display size and their influences on the evolution of floral traits, in *Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, Cambridge, 2001, p. 274.

White, R.H., Stevenson, R.D., Bennett, R.R., Cutler, D.E., and Haber, W.A., Wavelength discrimination and the role of ultraviolet vision in the feeding behavior of hawkmoths, *Biotropica* 26, 427, 1994.

Thom, C., Guerenstein, P.G., Mechaber, W.L., and Hildebrand, J.G., Floral CO₂ reveals flower profitability to moths, *J. Chem. Ecol.* 30, 1285, 2004.

Guerenstein, P.G., Yepez, A., Van Haren, J., Williams, D.G., and Hildebrand, J.G., Floral CO₂ emission may indicate food abundance to nectar feeding moths, *Naturwissenschaften* 91, 329, 2004.

Kevan, P.G. and Lane, M.A., Flower petal microtexture is a tactile cue for bees, *Proc. Natl. Acad. Sci. USA* 82, 4750, 1985.

Kevan, P.G., Giurfa, M., and Chittka, L., Why are there so many and so few white flowers?, *Trends Plant Sci.* 1, 280, 1996.

Ômura, H., Honda, K., and Hayashi, N., Floral scent of *Osmanthus fragrans* discourages foraging behavior of cabbage butterfly, *Pieris rapae*, *J. Chem. Ecol.* 26, 655, 2000.

Dodson, C.H., Dressler, R.L., Hills, H.G., Adams, R.M., and Williams, N.H., Biologically active compounds in orchid fragrances, *Science* 164, 1243, 1969.

Bergström, G., Birgersson, G., Groth, I., and Nilsson, A., Floral fragrance disparity between three taxa of lady's slipper, *Cypripedium calceolus* (Orchidaceae), *Phytochemistry* 31, 2315, 1992.

Borg-Karlson, A.-K., Unelius, C.R., Valterova, I., and Nilsson, L.A., Floral fragrance chemistry in the early flowering shrub, *Daphne mezereum* (Thymelaeaceae), *Phytochemistry* 41, 1477, 1996.

Chittka, L. and Menzel, R., The evolutionary adaptation of flower colours and the insect pollinator's colour vision, *J. Comp. Physiol. A* 170, 171, 1992.

Gegear, R.J. and Laverty, T.M., The effect of variation among floral traits on the flower constancy of pollinators, in *Cognitive Ecology of Pollination*, Chittka, L. and Thomson, J.D., Eds., Cambridge University Press, Cambridge, 2001, p. 1.

Wright, G.A., Skinner, B.D., and Smith, B.H., Ability of honeybee, *Apis mellifera*, to detect and discriminate odors of varieties of canola (*Brassica rapa* and *Brassica napus*) and snapdragon flowers (*Antirrhinum majus*), *J. Chem. Ecol.* 28, 721, 2002.

Ollerton, J., Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems, *J. Ecol.* 84, 767, 1996.

Johnson, S.D. and Steiner, K.E., Generalization versus specialization in plant pollination systems, *Trends Ecol. Evol.* 15, 140, 2000.

Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., and Thomson, J.D., Pollination syndromes and floral specialization, *Annu. Rev. Ecol. Evol. Syst.* 35, 375, 2004.

Raguso, R.A., Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement, *Curr. Opin. Plant Biol.* 7, 434, 2004.

Handel, S.N. and Peakall, R., Thynnine wasps discriminate among heights when seeking mates: tests with a sexually deceptive orchid, *Oecologia* 95, 241, 1993.

Kite, G.C., Inflorescence odour of the foul-smelling aroid, *Helicodiceros muscivorus*, *Kew Bull.* 55, 237, 2000.

Stensmyr, M.C., Urru, I., Collu, I., Celander, M., Hansson, B.S., and Angioy, A.-M., Rotting smell of dead horse arum florets, *Nature* 420, 625, 2002.

Angioy, A.-M., Stensmyr, M.C., Urru, I., Puliafito, M., Collu, I., and Hansson, B.S., Function of the heater: the dead horse arum revisited, *Proc. R. Soc. Lond. B* 271(suppl. 3), S13, 2003.

von Helversen, O., Winkler, L., and Bestmann, H.J., Sulphur-containing “perfumes” attract flower-visiting bats, *J. Comp. Physiol. A* 186, 143, 2000.

Winter, Y., López, J., and von Helversen, O., Ultraviolet vision in a bat, *Nature* 425, 612, 2003.

von Helversen, D. and von Helversen, O., Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine, *J. Comp. Physiol. A* 189, 327, 2003.

Pellmyr, O. and Patt, J.M., Function of olfactory and visual stimuli in pollination of *Lysichiton americanum* (Araceae) by a staphylinid beetle, *Madroño* 33, 47, 1986.

Pellmyr, O., Three pollination morphs in *Cimicifuga simplex*: incipient speciation due to inferiority in competition, *Oecologia* 68, 304, 1986.

Pellmyr, O., Thien, L.B., Bergström, G., and Groth, I., Pollination of New Caledonian Winteraceae: opportunistic shifts or parallel radiation with their pollinators?, *Plant Syst. Evol.* 173, 143, 1990.

Heyneman, A.J., Colwell, R.K., Naeem, S., Dobkin, D.S., and Hallet, B., Host plant discrimination: experiments with hummingbird flower mites, in *Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions*, Price, P.W., Lewinsohn, T.M., Fernandes, G.W., and Benson, W.W., Eds., John Wiley & Sons, New York, 1991, p. 455.

Lara, C. and Ornelas, J.F., Effects of nectar theft by flower mites on hummingbird behavior and the reproductive success of their host plant, *Moussonia deppeana* (Gesneriaceae), *Oikos* 96, 470, 2002.

Raguso, R.A., Olfactory landscapes and deceptive pollination: signal, noise and convergent evolution in floral scent, in *Insect Pheromone Biochemistry and Molecular Biology*, Blomquist, G.J. and Vogt, R., Eds., Academic Press, New York, 2003, p. 631.

Steele, C.L., Crock, J., Bohlmann, J., and Croteau, R., Sesquiterpene synthases from grand fir (*Abies grandis*): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization and bacterial expression of δ -selinene synthase and γ -humulene synthase, *J. Biol. Chem.* 273, 2078, 1998.

Barkman, T.J., Character coding of secondary chemical variation for use in phylogenetic analyses, *Biochem. Syst. Ecol.* 29, 1, 2001.

Armbruster, W.S., Estimating and testing adaptive surfaces: the morphology and pollination of *Dalechampia* blossoms, *Am. Nat.* 135, 14, 1990.

Cresswell, J.E. and Galen, C., Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of *Polemonium viscosum*, *Am. Nat.* 138, 1342, 1991.

Wadhams, L.J., Blight, M.M., Kerguelen, V., Le Métayer, M., Marion-Poll, F., Masson, C., Pham-Delègue, M.-H., Woodcock, C.M., Discrimination of oilseed rape volatiles by honey bee: novel combined gas chromatographic-electrophysiological behavioral assay, *J. Chem. Ecol.* 20, 3221, 1994.

Schiestl, F.P. and Marion-Poll, F., Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography, in *Molecular Methods of Plant Analysis*, vol. 21, *Analysis of Taste and Aroma*, Jackson, J.F., Linskens, H.F., and Inman, R., Eds., Springer, Berlin, 2002, p. 173.

Stranden, M., Borg-Karlson, A.-K., and Mustaparta, H., Receptor neuron discrimination of the germacrene D enantiomers in the moth *Helicoverpa armigera*, *Chem. Senses* 27, 143, 2002.

Honda, K., Ômura, H., and Hayashi, N., Identification of floral volatiles from *Ligustrum japonicum* that stimulate flower-visiting by cabbage butterfly, *Pieris rapae*, *J. Chem. Ecol.* 24, 2167, 1998.

Adams, R.P., von Rudloff, E., and Hogge, L., Chemosystematic studies of the western North American junipers based on their volatile oils, *Biochem. Syst. Ecol.* 11, 189, 1983.

Clement, J.S. and Mabry, T.J., Pigment evolution in the Caryophyllales: a systematic overview, *Bot. Acta* 109, 360, 1996.

Rodman, J.E., Divergence, convergence and parallelism in phytochemical characters: the glucosinolate-myrosinase system, in *Phytochemistry and Angiosperm Phylogeny*, Young, D.A. and Seigler, D.S., Eds., Praeger Scientific, New York, 1981, p. 43.

Dahl, Å.E., Wassgren, A.-B., and Bergström, G., Floral scents in *Hypecoum* sect. *Hypecoum* (Papaveraceae): chemical composition and relevance to taxonomy and mating system, *Biochem. Syst. Ecol.* 18, 157, 1990.

Knudsen, J.T. and Mori, S.A., Floral scents and pollination in neotropical Lecythidaceae, *Biotropica* 28, 42, 1996.

Thien, L.B., Heimermann, W.H., and Holman, R.T., Floral odors and quantitative taxonomy of *Magnolia* and *Liriodendron*, *Taxon* 24, 557, 1975.

Jürgens, A., Webber, A.C., and Gottsberger, G., Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips, *Phytochemistry* 55, 551, 2000.

Gerlach, G. and Schill, R., Fragrance analysis, an aid to taxonomic relationships of the genus *Coryanthes* (Orchidaceae), *Plant Syst. Evol.* 168, 159, 1989.

Jürgens, A., Floral scent compounds in nocturnal *Conophytum* species: chemical composition and its relevance to taxonomy and pollination biology, in *Dumpling and His Wife—New Views of the Genus Conophytum*, Hammer, S. and Barnhill, C., Eds., EAE Creative Color, Norwich, UK, 2002, p. 322.

Jürgens, A., Witt, T., and Gottsberger, G., Flower scent composition in *Dianthus* and *Saponaria* species (Caryophyllaceae) and its relevance for pollination biology and taxonomy, *Biochem. Syst. Ecol.* 31, 345, 2003.

Kite, G.C. and Hettterscheid, W.L.A., Inflorescence odours of *Amorphophallus* and *Pseudodracontium* (Araceae), *Phytochemistry* 46, 71, 1997.

Lindberg, A.B., Knudsen, J.T., and Olesen, J.M., Independence of floral morphology and scent chemistry as trait groups in a set of *Passiflora* species, *Det Norske Videnskaps-Akademi. I. Matematisk Naturvidenskapelige Klasse, Skrifter, Ny Ser.* 39, 91, 2000.

Levin, R.A., Raguso, R.A., and McDade, L.A., Fragrance chemistry and pollinator affinities in Nyctaginaceae, *Phytochemistry* 58, 429, 2001.

Dobson, H.E.M., Arroyo, J., Bergström, G., and Groth, I., Interspecific variation in floral fragrances within the genus *Narcissus* (Amaryllidaceae), *Biochem. Syst. Ecol.* 25, 685, 1997.

Barkman, T.J., Beaman, J.H., and Gage, D.A., Floral fragrance variation in *Cypripedium*: implications for evolutionary and ecological studies, *Phytochemistry* 44, 875, 1997.

Williams, W.M. and Whitten, N.H., Molecular phylogeny and floral fragrances of male euglossine bee-pollinated orchids: a study of *Stanhopea* (Orchidaceae), *Plant Species Biol.* 14, 129, 1999.

Azuma, H., Thien, L.B., and Kawano, S., Molecular phylogeny of *Magnolia* (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents, *J. Plant Res.* 112, 291, 1999.

Raguso, R.A., Levin, R.A., Foose, S.E., Holmberg, M.W., and McDade, L.A., Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in *Nicotiana*, *Phytochemistry* 63, 265, 2003.

Buckler, E.S., IV, Ippolito, A., Holtsford, T.P., The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications, *Genetics* 145, 821, 1997.

Chase, M.W., Knapp, S., Cox, A.V., Clarkson, J.J., Butsko, Y., Joseph, J., Savolainen, V., Parokonny, A.S., Molecular systematics, GISH and the origin of hybrid taxa in *Nicotiana* (Solanaceae), *Annals of Botany* 92, 107, 2003.

Burdock, G.A., *Fenaroli's Handbook of Flavor Ingredients*, 4th ed., CRC Press, Boca Raton, FL, 2002.

Zuker, A., Tzffira, T., and Vainstein, A., Genetic engineering for cut-flower improvement, *Biotechnol. Adv.* 16, 33, 1998.

Verhoeven, H.A., Blaas, J., and Brandenburg, W.A., Fragrance profiles of wild and cultivated roses, in *Encyclopedia of Rose Science*, Roberts, A.V. and Debener, T., Eds., Academic Press, Amsterdam, 2003, p. 240.

Dudareva, N. and Pichersky, E., Biochemical and molecular genetic aspects of floral scents, *Plant Physiol.* 122, 627, 2000.

Vainstein, A., Lewinsohn, E., Pichersky, E., and Weiss, D., Floral fragrance: new inroads into an old commodity, *Plant Physiol.* 127, 1383, 2001.

Wang, E.M., Hall, J.T., and Wagner, J.G., Transgenic *Nicotiana tabacum* L. with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field, *Mol. Breed.* 13, 49, 2004.

Wang, E.M., Wang, R., DeParasis, J., Loughrin, J.H., Gan, S., and Wagner, G.J., Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance, *Nat. Biotechnol.* 19, 371, 2001.

Griffin, S.G., Wyllie, S.G., Markham, J.L., and Leach, D.N., The role of structure and molecular properties of terpenoids in determining their antimicrobial activity, *Flavour Fragr. J.* 14, 322, 1999.

Beckstrom-Sternberg, S.M. and Duke, J.A., *Handbook of Medicinal Mints (Aromatherapeutics): Phytochemicals and Biological Activities*, CRC Press, Boca Raton, FL, 1996.

Neirotti, E., Moscatelli, M., and Tiscornia, S., Antimicrobial activity of the limonene, *Arg. Biol. Tecnol.* 39, 233, 1996.

Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W., Schwab, W., and Bouwmeester, H.J., Terpenoid metabolism in wild-type and transgenic *Arabidopsis* plants, *Plant Cell* 15, 2866, 2003.

Beekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F.W., Bouwmeester, H.J., and Aharoni, A., Functional characterization of enzymes forming volatile esters from strawberry and banana, *Plant Physiol.* 135, 1865, 2004.

Lavy, M., Zuker, A., Lewinsohn, E., Larkov, O., Ravid, U., Vainstein, A., and Weiss, D., Linalool and linalool oxide production in transgenic carnation flowers expressing the *Clarkia breweri* linalool synthase gene, *Mol. Breed.* 9, 103, 2002.

Lewinsohn, E., Schalechet, F., Wilkinson, J., Matsui, K., Tadmor, Y., Nam, K.-H., Amar, O., Lastochkin, E., Larkov, O., Ravid, U., Hiatt, W., Gepstein, S., and Pichersky, E., Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits, *Plant Physiol.* 127, 1256, 2001.

Lücker, J., Bouwmeester, H.J., Schwab, W., Blaas, J., van der Plas, L.H.W., and Verhoeven, H.A., Expression of *Clarkia S*-linalool synthase in transgenic petunia plants results in the accumulation of *S*-linalyl- β -D-glucopyranoside, *Plant J.* 27, 315, 2001.

Lücker, J., Schwab, W., Franssen, M.C., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.A., Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-*trans*-isopiperitenol by tobacco, *Plant J.* 39, 135, 2004.

Lücker, J., Schwab, W., van Hautum, B., Blaas, J., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.A., Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon, *Plant Physiol.* 134, 510, 2004.

Zuker, A., Tzefira, T., Ben-Meir, H., Ovadis, M., Shklarman, E., Itzhaki, H., Forkmann, G., Martens, S., Neta-Sharir, I., Weiss, D., and Vainstein, A., Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene, *Mol. Breed.* 9, 33, 2002.

Bouwmeester, H.J., Kappers, I.F., Verstappen, F.W.A., Aharoni, A., Luckerhoff, L.L.P., Lücker, J., Jongasma, M.A., and Dicke, M., Exploring multi-trophic plant-herbivore interactions for new crop protection methods, in *The International Congress Crop Science and Technology*, British Crop Protection Council, Alton, UK, Glasgow, 2003, p. 1123.

Bohlmann, J., Meyer-Gauen, G., and Croteau, R., Plant terpenoid synthases: molecular biology and phylogenetic analysis, *Proc. Natl. Acad. Sci. USA* 95, 4126, 1998.

Chappell, J., The genetics and molecular genetics of terpene and sterol origami, *Curr. Opin. Plant Biol.* 5, 151, 2002.

Haudenschild, C.D. and Croteau, R.B., Molecular engineering of monoterpene production, *Genet. Eng.* 20, 267, 1998.

McCaskill, D. and Croteau, R.B., Prospects for the bioengineering of isoprenoid biosynthesis, *Adv. Biochem. Eng. Biotechnol.* 55, 107, 1997.

McCaskill, D. and Croteau, R., Some caveats for bioengineering terpenoid metabolism in plants, *Trends Biotechnol.* 16, 349, 1998.

Little, D.B., and Croteau, R.B., Biochemistry of essential oil terpenes: a thirty year overview, in *Flavor Chemistry: 30 Years of Progress*, Teranishi, R. and Wick, E.L., Eds., Kluwer Academic/Plenum Publishers, New York, 1999, p. 239.

Mahmoud, S.S. and Croteau, R.B., Strategies for transgenic manipulation of monoterpene biosynthesis in plants, *Trends Plant Sci.* 7, 366, 2002.

Chappell, J., Valencene synthase: a biochemical magician and harbinger of transgenic aromas, *Trends Plant Sci.* 9, 266, 2004.

Wolfertz, M., Sharkey, T.D., Boland, W., and Kuhnemann, F., Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis, *Plant Physiol.* 135, 1939, 2004.

Fahn, A., *Secretory Tissues in Plants*, Academic Press, London, 1979.

Gershenzon, J., Maffei, M., and Croteau, R., Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (*Mentha spicata*), *Plant Physiol.* 89, 1351, 1989.

Gershenzon, J., McConkey, M.E., and Croteau, R.B., Regulation of monoterpene accumulation in leaves of peppermint, *Plant Physiol.* 122, 205, 2000.

Mahmoud, S.S. and Croteau, R.B., Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxxyxylulose phosphate

reductoisomerase and menthofuran synthase, *Proc. Natl. Acad. Sci. USA* 98, 8915, 2001.

Bertea, C.M., Schalk, M., Karp, F., Maffei, M., and Croteau, R., Demonstration that menthofuran synthase of mint (*Mentha*) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene, *Arch. Biochem. Biophys.* 390, 279, 2001.

Krasnyanski, S., May, R.A., Loskutov, A., Ball, T.M., and Sink, K.C., Transformation of the limonene synthase gene into peppermint (*Mentha x piperita* L.) and preliminary studies on the essential oil profiles of single transgenic plants, *Theor. Appl. Genet.* 99, 676, 1999.

Ohara, K., Ujihara, T., Endo, T., Sato, F., and Yazaki, K., Limonene production in tobacco with *Perilla* limonene synthase cDNA, *J. Exp. Bot.* 54, 2635, 2003.

Nawrath, C., Poirier, Y., and Somerville, C., Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of *Arabidopsis thaliana* results in high levels of polymer accumulation, *Proc. Natl. Acad. Sci. USA* 91, 12760, 1994.

Capell, T. and Christou, P., Progress in plant metabolic engineering, *Curr. Opin. Biotech.* 15, 148, 2004.

Lücker, J., El Tamer, M.K., Schwab, W., Verstappen, F.W., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.A., Monoterpene biosynthesis in lemon (*Citrus limon*): cDNA isolation and functional analysis of four monoterpene synthases, *Eur. J. Biochem.* 269, 3160, 2002.

El Tamer, M.K., Smeets, M., Holthuysen, N., Lücker, J., Tang, A., Roozen, J., Bouwmeester, H.J., and Voragen, A.G.J., The influence of monoterpene synthase transformation on the odour of tobacco, *J. Biotechnol.* 106, 15, 2003.

Dudareva, N., Cseke, L., Blanc, V.M., and Pichersky, E., Evolution of floral scent in *Clarkia*: novel patterns of S-linalool synthase gene expression in the *C. breweri* flower, *Plant Cell* 8, 1137, 1996.

Lücker, J., *Metabolic engineering of monoterpene biosynthesis in plants*, Ph.D. dissertation, Wageningen University, 2002.

Izumi, S., Takashima, O., and Hirata, T., Geraniol is a potent inducer of apoptosis-like cell death in the cultured shoot primordia of *Matricaria chamomilla*, *Biochem. Biophys. Res. Commun.* 259, 519, 1999.

Vaughn, S.F. and Spencer, G.F., Volatile monoterpenes inhibit potato tuber sprouting, *Am. Potato J.* 68, 821, 1991.

Weidenhamer, J.D., Macias, F.A., Fischer, N.H., and Williamson, G.B., Just how insoluble are monoterpenes?, *J. Chem. Ecol.* 19, 1799, 1993.

Suga, T. and Hirata, T., Biotransformation of exogenous substrates by plant cell cultures, *Phytochemistry* 29, 2393, 1990.

Bosabalidis, A.M., Ontogenesis, ultrastructure and morphometry of the petiole oil ducts of celery (*Apium graveolens* L.), *Flavour Fragr. J.* 11, 269, 1996.

Bouwmeester, H.J., Gershenzon, J., Konings, M.C.J.M., and Croteau, R., Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development, *Plant Physiol.* 117, 901, 1998.

Rohdich, F., Hecht, S., Gartner, K., Adam, P., Krieger, C., Amslinger, S., Arigoni, D., Bacher, A., and Eisenreich, W., Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein, *Proc. Natl. Acad. Sci. USA* 99, 1158, 2002.

Adam, K.P. and Zapp, J., Biosynthesis of the isoprene units of chamomile sesquiterpenes, *Phytochemistry* 48, 953, 1998.

McCaskill, D. and Croteau, R., Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (*Mentha x piperita*) rely exclusively on plastid-derived isopentenyl diphosphate, *Planta* 197, 49, 1995.

Laule, O., Führholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W., and Lange, B.M., Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in *Arabidopsis thaliana*, *Proc. Natl. Acad. Sci.* 100, 6866, 2003.

Bick, J.A. and Lange, B.M., Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane, *Arch. Biochem. Biophys.* 415, 146, 2003.

Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., and Gershenzon, J., The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers, *Proc. Natl. Acad. Sci. USA* 102, 933, 2005.

Wei, S., Marton, I., Dekel, M., Shalitin, D., Lewinsohn, E., Bravdo, B.A., and Shoseyov, O., Manipulating volatile emission in tobacco leaves by expressing *Aspergillus niger* β -glucosidase in different subcellular compartments, *Plant Biotech. J.* 2, 341, 2004.

Bouvier, F., Suire, C., Mutterer, J., and Camara, B., Oxidative remodeling of chromoplast carotenoids: Identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in crocus secondary metabolite biogenesis, *Plant Cell* 15, 47, 2003.

Simkin, A.J., Underwood, B.A., Auldrige, M., Loucas, H.M., Shibuya, K., Schmelz, E., Clark, D.G., and Klee, H.J., Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers, *Plant Physiol.* 136, 3504, 2004.

Simkin, A.J., Schwartz, S.H., Auldrige, M., Taylor, M.G., and Klee, H.J., The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone, *Plant J.* 40, 882, 2004.

Hohn, T.M. and Ohlrogge, J.B., Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco, *Plant Physiol.* 97, 460, 1991.

Wallaart, T.E., Bouwmeester, H.J., Hille, J., Poppinga, L., and Majers, N.C.A., Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin, *Planta* 212, 460, 2001.

Gantet, P. and Memelink, J., Transcription factors: tools to engineer the production of pharmacologically active plant metabolites, *Trends Pharmacol. Sci.* 23, 563, 2002.

Broun, P., Transcription factors as tools for metabolic engineering in plants, *Curr. Opin. Plant Biol.* 7, 202, 2004.

Bruce, W., Folkerts, O., Garnaat, C., Crasta, O., Roth, B., and Bowen, B., Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P, *Plant Cell* 12, 65, 2000.

Grotewold, E., Chamberlin, M., Snook, M., Siame, B., Butler, L., Swenson, J., Maddock, S., and Bowen, B., Engineering secondary metabolism in maize cells by ectopic expression of transcription factors, *Plant Cell* 10, 721, 1998.

van der Fits, L. and Memelink, J., ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism, *Science* 289, 295, 2000.

Raguso, R.A. and Pichersky, E., A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: linalool biosynthesis in flowering plants, *Plant Species Biol.* 14, 95, 1999.

Pichersky, E. and Gershenzon, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, *Curr. Opin. Plant Biol.* 5, 237, 2002.

Hori, M., Repellency of rosemary oil against *Myzus persicae* in a laboratory and in a screenhouse, *J. Chem. Ecol.* 24, 1425, 1998.

Hori, M. and Harada, H., Screening plants resistant to green peach aphid, *Myzus persicae* (Sulzer) (Homoptera: Aphididae), *Appl. Entomol. Zool.* 30, 246, 1995.

Jacobson, M., Plants, insects, and man—their interrelationships, *Econ. Bot.* 36, 346, 1982.

De Moraes, C.M., Mescher, M.C., and Tumlinson, J.H., Caterpillar-induced nocturnal plant volatiles repel conspecific females, *Nature* 29, 577, 2001.

Dicke, M. and van Loon, J.J.A., Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context, *Entomol. Exp. Appl.* 97, 237, 2000.

Belaiche, T., Tantaoui, E., and Ibrahimy, A., Application of a two levels factorial design to the study of the antimicrobial activity of three terpenes, *Sci. Aliment.* 15, 571, 1995.

Caccioni, D.R.L., Guzzardi, M., Biondi, D.M., Renda, A., and Ruberto, G., Relationship between volatile components of citrus fruit essential oils and antimicrobial action on *Penicillium digitatum* and *Penicillium italicum*, *Int. J. Food Microbiol.* 43, 73, 1998.

Tsao, R. and Zhou, T., Antifungal activity of monoterpenoids against postharvest pathogens *Botrytis cinerea* and *Monilinia fructicola*, *J. Essent. Oil Res.* 12, 113, 2000.

Agarwal, K.K., Khanuja, S.P.S., Ahmad, A., Santha Kumar, T.R., Gupta, V.K., Kumar, S., Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of *Mentha spicata* and *Anethum sowa*, *Flavour Fragr. J.* 17, 59, 2002.

Baldwin, I.T., An ecologically motivated analysis of plant-herbivore interactions in native tobacco, *Plant Physiol.* 127, 1449, 2001.

Bouwmeester, H.J., Verstappen, F.W., Posthumus, M.A., and Dicke, M., Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis, *Plant Physiol.* 121, 173, 1999.

van Poecke, R.A., Posthumus, M.A., and Dicke, M., Herbivore-induced volatile production by *Arabidopsis thaliana* leads to attraction of the parasitoid *Cotesia rubecula*: chemical, behavioral, and gene-expression analysis, *J. Chem. Ecol.* 27, 1911, 2001.

Weissbecker, B., Schütz, S., Klein, A., and Hummel, H.E., Analysis of volatiles emitted by potato plants by means of a Colorado beetle electroantennographic detector, *Talanta* 44, 2217, 1997.

Fray, R.G., Wallace, A., Fraser, P.D., Valero, D., Hedden, P., Bramley, P.M., and Grierson, D., Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway, *Plant J.* 8, 693, 1995.

Eriksson, M.E., Israelsson, M., Olsson, O., and Moritz, T., Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length, *Nat. Biotechnol.* 18, 784, 2000.

Romagni, J.G., Allen, S.N., and Dayan, F.E., Allelopathic effects of volatile cineoles on two weedy plant species, *J. Chem. Ecol.* 26, 303, 2000.

Vaughn, S.F. and Spencer, G.F., Synthesis and herbicidal activity of modified monoterpenes structurally similar to cimmethylin, *Weed Sci.* 44, 7, 1996.

Bewley, J.D., Seed germination and dormancy, *Plant Cell* 9, 1055, 1997.

Chernys, J.T. and Zeevaart, J.A., Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado, *Plant Physiol.* 124, 343, 2000.

Trethewey, R.N., Metabolite profiling as an aid to metabolic engineering in plants, *Curr. Opin. Plant Biol.* 7, 196, 2004.

Guillon, J., Rioult, J.-P., and Robba, M., New synthesis of isopiperitenol, previously isolated from species of *Cymbopogon*, *Flavour Fragr. J.* 15, 223, 2000.